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Abstract 
With the growing amount and diversity of intermediate omics data complementary to genomics 
(e.g., gene expression), there is a need to develop methods to incorporate intermediate omics 
data into conventional genomic evaluation. We developed a new method named NN-LMM to 
model the multiple layers of regulation from genotypes to intermediate omics features, then to 
phenotypes, by extending conventional linear mixed models (“LMM”) to multi-layer neural 
networks (“NN”). NN-LMM incorporates intermediate omics features by adding middle layers 
between genotypes and phenotypes. Linear mixed models (e.g., GBLUP, Bayesian Alphabet) 
can be used to sample marker effects or genetic values on intermediate omics features, and 
activation functions in neural networks can capture the nonlinear relationships between 
intermediate omics features and phenotypes. NN-LMM had significantly better prediction 
performance than the recently proposed single-step approach. Moreover, NN-LMM can handle 
various patterns of missing omics measures. NN-LMM has been implemented in an open-
source package called "JWAS". 
 
Introduction 
The advances in high-throughput sequencing technology provide growing amount and diversity 
of multi-omics data complementary to genomics. The effects of genotypes on phenotypes can 
be mediated by multiple layers of omics features through mechanisms such as regulatory 
cascades from epigenome, to transcriptome, and to proteome (Ritchie et al., 2015; Wu et al., 
2018). This multi-layer regulation works as a unified system to connect genome variations to 
the trait, and the relationships between different layers can be complex with interactions and 
nonlinear relationships (Kitano, 2002). A system of two linear models has been developed 
recently for genomic evaluation (Christensen et al., 2021; Weishaar et al., 2020), where one 
linear model describes how genotypes affect gene expression levels, and another describes how 
gene expression levels affect phenotypes. This system of two linear models was further 
extended for incomplete omics data based on single-step approach (Christensen et al., 2021). 
We developed a new method named NN-LMM (Zhao et al., 2021a; Zhao et al., 2021b) to model 
the multiple layers of regulation from genotypes to intermediate omics features, then to 
phenotypes, by extending conventional linear mixed models ("LMM") to multi-layer artificial 
neural networks ("NN"). NN-LMM incorporates intermediate omics features by adding middle 
layers between genotypes and phenotypes. Linear mixed models can be used to sample marker 
effects or genetic values on intermediate omics features, and nonlinear activation functions in 
neural networks are used to approximate the nonlinear relationships between intermediate 
omics features and phenotypes. Compared to other methods, NN-LMM allows various patterns 
of missing omics data, for example, individuals can have different missing omics features, and 
the assumption of nonlinearity between intermediate omics features and phenotypes may be 
more biologically realistic. 
 

mailto:qtlcheng@ucdavis.edu


Materials & Methods 
The framework of NN-LMM incorporating intermediate omics data such as gene expression 
levels is shown in Figure 1(a). Genotypes affect the gene expression levels, then gene 
expression levels regulate the phenotypes. Linear mixed models can be applied to sample 
marker effects or genetic values on gene expression levels, and the non-linear activation 
function in neural networks will be used to capture the complex nonlinear relationships between 
gene expression levels and phenotypes. For an individual, the gene expression levels of the first 
two genes are 0.9 and 0.1, respectively, and the gene expression of the last gene is missing to 
be sampled. Individuals can have different missing gene expression levels. A detailed 
framework of NN-LMM is shown in Figure 1(b), and Markov chain Monte Carlo (MCMC) 
approaches are used to infer unknowns. 
 

 
Figure 1. The framework of NN-LMM incorporating intermediate omics data. 
 
From middle layer (intermediate omics features) to output layer (phenotypes): non-linear 
activation function. Given all intermediate omics features, the phenotype of individual i is 
modeled as: 
𝑦𝑦𝑖𝑖 = 𝜇𝜇(1) + ∑ 𝑤𝑤𝑗𝑗

(1)𝑔𝑔𝑙𝑙1
𝑗𝑗=1 �𝑧𝑧𝑖𝑖,𝑗𝑗� + 𝑒𝑒𝑖𝑖                                                          (1) 

where yi is the phenotype, µ(1) is the overall mean with flat prior, zi,j is the j-th intermediate 
omics feature, g(.) is the activation function in neural networks, wj

(1) is the effect of g(zi,j) on yi 
with a normal prior, and ei is the random residual with normal prior. 
 
From input layer (genotypes) to middle layer (intermediate omics features): mixed models. 
Given all intermediate omics features, for individual i, the relationship between the j-th 
intermediate omics feature and genotypes can be written as a single-trait mixed model (e.g., 
Bayesian Alphabet) as: 
𝑧𝑧𝑖𝑖,𝑗𝑗 = 𝜇𝜇𝑗𝑗

(0) + ∑ 𝑥𝑥𝑖𝑖,𝑚𝑚𝑤𝑤𝑗𝑗,𝑚𝑚
(0)𝑙𝑙0

𝑚𝑚=1 + 𝜖𝜖𝑖𝑖,𝑗𝑗                                                          (2) 
where zi,j is the j-th intermediate omics feature, µj

(0) is its overall mean with flat prior, xi,m is the 
genotype covariate at locus m (coded as 0, 1, 2), wj,m

(0) is the marker effects of locus m on j-th 
intermediate omics feature, which can be sampled by various linear mixed models, εij is the 
random residual with normal prior. 
 



Sample missing omics data by Hamiltonian Monte Carlo. Each missing omics feature of 
individual i will be treated as an unobserved intermediate trait to be sampled by Hamiltonian 
Monte Carlo (HMC) from its full conditional distributions. The introduction to the concepts 
underlying HMC can be found in Betancourt (2018). 
 
Data Analysis. To compare the prediction performance of NN-LMM to the single-step 
approach in Christensen et al. (2021), a linear activation function was used in NN-LMM. 
GBLUP was used to sample genetic values on intermediate omics features (i.e., NN-GBLUP). 
Simulated data from Christensen et al. (2021) were used. Note that in Christensen et al. (2021), 
a polygenic effect whose covariance matrix is defined by the pedigree or/and genotypes is also 
included in Equation (1). This part is ignored here for simplicity, and was subtracted from the 
simulated phenotypes. Two patterns of missing omics data were considered: missing omics 
pattern (i): all omics data are completely missing for some individuals; missing omics pattern 
(ii): for each omics feature, some random individuals have no omics data. The single-step 
approach only works in the scenario (i), while NN-LMM allows both scenarios. Different 
proportions of missing omics data in the training dataset were considered, where 0% denotes 
the scenario where all omics features are measured on all individuals. 20 replicates were used 
for each scenario. We randomly sampled 5% individuals from the simulated data in Christensen 
et al. (2021) to have a subset of 1,055 individuals. The genotypic data consisted of 15,000 SNP 
markers observed for all individuals, and the intermediate omics data consisted of 1,200 omics 
features. The heritability of each omics feature was 0.61, and the heritability of the phenotypic 
trait was 0.337. More details about the simulation process are in Christensen et al. (2021).  
We also simulated nonlinear relationships between intermediate omics features and phenotypes, 
where the logistic non-linear transformation was applied to the omics data as in Equation (1). 
In this case, the same heritability and variance components were applied.  
 
Results  
When all omics features were measured on all individuals, NN-GBLUP had similar prediction 
accuracies as the system of two mixed model equations in Christensen et al. (2021) (correlation 
r=0.999). When some omics data were missing, NN-LMM had equivalent or better prediction 
performance, as shown in Figure 2. Overall, the prediction accuracy decreased when the 
proportion of missing omics data increased. For missing omics pattern (i), when a small 
proportion of individuals had no omics data, NN-GBLUP (red solid line) had similar prediction 
performance as the single-step approach in Christensen et al. (2021) (blue solid line). However, 
when a large proportion of individuals had no omics data (e.g., >80%), NN-GBLUP had 
significantly higher prediction accuracies (pairwise t-test P-value < 0.005). When >90% 
individuals had no omics data, the single-step approach performed even worse than the baseline 
(black dashed line), which was a conventional GBLUP model where no omics data were used. 
For missing omics pattern (ii), when some random individuals had no omics measures for each 
omics feature, the prediction accuracy of NN-GBLUP (red dashed line) decreased with larger 
proportion of missing omics data, and eventually close to the baseline, whereas the single-step 
approach did not work for this scenario. 
When the underlying relationships between omics features and phenotype was nonlinear, 
results verified that using the nonlinear sigmoid activation function in NN-LMM was 
significantly better than using the linear activation function. 
 



 
Figure 2. Prediction accuracies of NN-GBLUP with the linear activation function and the 
single-step approach in Christensen et al. (2021). The missing omics pattern (i): all omics 
features were not measured on some individuals, and missing omics pattern (ii): for each 
omics feature, some random individuals had no omics measures. The horizontal black 
dashed linear is the conventional GBLUP model used as the baseline. Each dot represents 
the mean of prediction accuracies from 20 replications with its standard error. The 
asterisk symbol indicated a significantly better performance of NN-GBLUP. 
 
Discussion 
To sample marker effects on omics features, a naive multi-threaded parallelism has been 
implemented to employ multiple single-trait mixed models in parallel at each MCMC iteration. 
Parallel computing strategies such as those in Zhao et al. (2020) will be further studied. 
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