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Abstract 
Defining multiple base populations for a genetic evaluation is subjective and there is generally 
no feedback on the suitability of the defined base populations prior to model validation. We 
present a number of statistics that can be used to evaluate defined base populations. Application 
of these statistics to one simulated and two practical datasets showed that in practical datasets 
the number of base animals per base population was in one case very low. In many cases the 
available genotype information for different base populations was coming from exactly the 
same genotyped animals. Both issues are likely to complicate genomic evaluation. A tool to 
estimate these statistics is available in the MiXBLUP software suite. 
 
Introduction 
Any pedigree contains founder animals with unknown parents. There may be other animals 
with unknown parents because of incorrectly or not recording parents at birth, or uncertainty 
about the sire in case of unobserved matings or use of pooled semen. We refer to these animals 
as base animals. In genetic evaluations, we generally assume that these base animals are 
sampled from an infinite population, so we consider them to be genetically unrelated. If base 
animals originate from various populations or different generations within the same population, 
we may define several base populations, based on an expected difference in genetic level, due 
to origin or selection history. Criteria often used for defining base populations are breed, line 
within breed, sex, years of birth and selection path (Quaas and Pollak, 1981; Mrode, 2014,  
p55), but the result is subjective. Legarra et al. (2015) suggested to use genomic information to 
take into account that base populations are finite in reality, and that genetic relationships may 
exist within and across base populations. Such related base populations are referred to as 
metafounders (MF). In contrast to MF, base populations that are assumed to be unrelated are 
referred to as unknown parent groups (UPG). Defining multiple base populations is aimed at 
minimizing bias in genetic trend and estimated breeding values of selection candidates and 
reducing the mean square error of the evaluation (Foulley et al., 1990). Whether the definition 
used is effective, depends on the true differences in genetic level and the precision with which 
genetic level of each base population is estimated. For MF, it also depends on the amount and 
quality of genomic data available to estimate genetic relationships within and between MF. In 
practice, the appropriateness of the defined base populations can only be assessed by extensive 
model validation. The aim of this paper is to present a number of base population statistics that 
can help to evaluate the suitability of defined base populations prior to any model validation. 
 
Materials & Methods 
Description of datasets. The base population statistics are illustrated with three example 
datasets (Table 1). Dataset A is a simulated set of data, which was used in the study of Van 
Grevenhof et al. (2019) that recommended the use of MF. Dataset B is a subset of a routine 
genetic evaluation and consists of purebred pigs of a single line, their crossbred progeny and 
ancestors of dams of crossbred pigs., In dataset B, base populations were defined by line and 
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one or more years of birth. Dataset B had a history of poor convergence when using UPG. 
Dataset C is a set of a routine evaluation of trout using UPG, defined by breeding population. 
Each founder animal was assigned to a single base population in dataset A and B, but to two in 
dataset C. 
 
Table 1. Descriptive statistics of example datasets. 
 Dataset A Dataset B Dataset C  
Lines + crosses, N 3 + 2 4 + 3 1 + 0  
Animals in pedigree, N 51,500 421,511 385,200  
Generations in pedigree, N 8 42 12  
Animals genotyped, N 9,250 72,854 6,351  

 
Base population statistics. We introduce three base population statistics, which all include the 
parameters cij and qij. We define a genomic base population which consists of all genotyped 
animals with a path of non-genotyped ancestors to a base population. Genotyped animals that 
are descendants of two genotyped parents are not included as they do not provide genotype 
information to a base population. Now cij quantifies the width of the path of non-genotyped 
ancestors to the base population and hence is the genomic contribution of the genomic base 
animal j to base population i. If cij is lower than 1, then animal j has genotyped ancestors. The 
parameter qij is the fraction relating the contribution of base population i to the total genetic 
value of the animal j and is an element of the Q matrix in QP transformation (Quaas and Pollak, 
1981). If qij is lower than 1, then animal j is related to multiple base populations.  
The first statistic quantifies the amount of genotype information available for each base 
population. Imputation of non-genotyped animals from genotyped descendants only using 
pedigree relationships causes loss of information, because the genotype information has to be 
distributed to two parents in every generation without genotypes. We therefore introduce 
equivalent number of base animals genotyped for a base population (Neqi). It is calculated as: 
𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖 ∗ (1

2
)𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑗𝑗𝑁𝑁

𝑗𝑗=1  (1) 
where N is the number of animals in the genomic base population and generj is the maximum 
number of generations between animal j and base population i.  
The second statistic quantifies uniqueness of genotype information and is the extent to which 
the same genotype information was used for a pair of base populations, which we call auto-
similarity of one base population to the other. To illustrate the concept, imagine 24 balls, 8 red, 
8 blue and 8 orange. The balls are placed in two bowls, so the first bowl contains 5 red and 4 
blue balls. The second contains the remaining 3 red, 4 blue and 8 orange. The similarity of bowl 
one to bowl two is 3 red + 4 blue over 9 balls is 0.78. The similarity of the second bowl to the 
first one is 3 red + 4 blue over 15 balls is 0.47. The colours in the illustration are genotyped 
animals, the bowls are base populations and the number of balls of the same colour in the same 
bowl is q. So auto-similarity of base population i to j (ASi to j) is calculated as: 

𝐴𝐴𝐴𝐴𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗 =
∑ 𝑐𝑐𝑖𝑖𝑖𝑖min (𝑞𝑞𝑖𝑖𝑖𝑖,𝑞𝑞𝑗𝑗𝑗𝑗)𝑁𝑁
𝑘𝑘=1

∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖𝑁𝑁
𝑘𝑘=1

 (2) 

An ASi to j of 0 means that genotype information available to two base populations is 
independent. A value of 1 means that genotype information available is identical. 
The third statistic quantifies the proximity of genotype information and is the weighted average 
number of generations between base animals in a base population and the genomic base 
population. It is calculated as: 

𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝑖𝑖 =
∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑗𝑗𝑁𝑁
𝑗𝑗=1

∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖𝑁𝑁
𝑗𝑗=1

 (3) 



δGener differentiates between many remote genotyped descendants and fewer proximate ones 
for a given Neq. 
 
 

 
Figure 1. Histogram of number of base animals per base population.  
 
Table 2. Statistics of base populations. 
 Dataset A Dataset B Dataset C  
Base populations, N 3 212 8  
Base animals in total, N 1,030 5,702 2,028  
Base populations without a link to 
genotypes, % 

0% 47.5% 50.0%  

Base populations Neq1 < 0.05 0% 43.5% 0%  
Average non-zero Neq1 9.5 8.0 5.3  
Range non-zero Neq1 9.4 - 9.6 1.0 - 27.0 1.0 - 9.5  
Average AS2 across pairs of base 
populations 

0.06 0.07 0.14  

Full AS2 with at least one other base 
population, % 

0.0% 43.9% 50.0%  

Average size of genomic base 
population3 per base population 

2,247 12.2 507  

Average δGener4 8.4 25.7 8.3  
1 Neq: amount of genotype information expressed as equivalent number of base animals genotyped (Equation 1) 
2 AS: auto-similarity of genotype information of a base population to another and is a measure of the extent to 
which the same genotype information was used for both base populations (Equation 2) 
3 Genomic base population: genotyped animals with a path of non-genotyped ancestors to the base population 
4 δGener: number of generations between genomic base population and base animals (Equation 3) 
 
Results 
The number of base animals as a proportion of the total number of animals in the pedigree was 
similar across datasets (0.5-2.0%). The number of defined base populations varied enormously 
across datasets and ranged from 3 to 212 (Table 2). Also, the number of base animals per base 
population varied considerably between datasets and within Dataset B (Figure 1).  



In dataset A, all base populations were well-linked to genotyped animals (Table 2), whereas in 
datasets B and C, half the base populations had no genetic link to a genotyped animal. The 
average of non-zero Neq was similar across datasets, but variation was larger in datasets B and 
C. Of all base populations in datasets B and C, 43.9% and 50% had an AS of 1 with at least one 
other base population, meaning that their available genotype information was based on the same 
information (Table 2). In dataset A, there were no pairs of base populations with full AS. In 
datasets A and C, average δGener was 8.4 and 8.3, respectively. In dataset B, there were five 
clear clusters with a δGener of 0, 18, 24, 33 and 39 generations.  
 
Discussion  
The statistics presented quantify amount, uniqueness and proximity of genomic information for 
base populations and were useful for evaluating definitions of base populations to be fitted 
either as UPG or MF.  
All studied datasets represented well-recorded populations with 98% or more of pedigree 
records being complete. Defining base populations based on an expected or a priori known 
difference in genetic level is only meaningful if these true differences can be estimated, so base 
populations should be defined to be sufficiently large.  
The history of poor convergence when adding UPG to the model for dataset B is most likely 
caused by the large number of base populations with a small number of base animals (Figure 
1). Poor connection of MF with genotyped animals, and pairs of MF with full auto-similarity 
(dataset B and C) will cause the gamma matrix of relationships within and between MF to be 
singular. If the gamma matrix (or Q’Q in QP transformation) is close to singularity, so is the 
coefficient matrix of the evaluation, which is known to slow down convergence when solving 
equations with a conjugate gradient method. 
Another issue is the very deep pedigree of dataset B, in some cases, 30 generations of ancestors 
before the first animals with a genotype. The reasoning was not to lose any known pedigree 
relationships by removing generations of ancestors from the pedigree. For such data, the 
challenge is to reduce the number of generations in the pedigree without losing genetic 
relationships. A solution may be to define a set of base animals two or three generations before 
the first animals with data or genotypes and use pedigree records of ignored ancestors to 
construct relationships between these base animals, similar to MF.  
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