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Abstract 
We herein characterized fine-scale meiotic recombination rate (RR) variation in a whole-
genome sequenced cattle pedigree including 264 individuals. With a family-based approach, 
we identified 6,644 cross-over (CO) events (median length: 3.9kb) whereas with a population-
based method, we observed the presence of 12,776 recombination hotspots (median length: 
1.5kb). Although these hotspots represented only 0.97% of the genome, 38.3% of the CO 
overlapped with these hotspots (40.6% in males, 34.8% in females), suggesting that they 
might still be in use in the current population. Subsequently, we determined that RR was 
higher in open chromatin regions, in CpG islands, and in predicted PRDM9 motifs. 
Conversely, lower RR were estimated close to genes except in the transcription start sites. 
Finally, higher RR were estimated around H3K4me3 histone mark in testis, further supporting 
the implication of the PRDM9 zinc finger protein in meiotic recombination in cattle.  
 
Introduction 
Meiotic recombination is an important biological process as it ensures the proper segregation 
of homologues during meiosis and it shapes the patterns of linkage disequilibrium (LD) by 
creating new combinations of alleles (see for instance Coop and Przeworski, 2007, Baudat et 
al., 2010, and Peñalba and Wolf, 2020, for reviews). Two approaches can be used to study 
meiotic recombination from genotypes (Peñalba and Wolf, 2020). First, family-based 
approaches allow to identify sex-specific cross-over (CO) events and provide current 
recombination rates (RR). Second, population (or LD)-based approaches provide historical 
sex-averaged RR. These latter maps represent relative estimates as they are influenced by 
other parameters such as past effective population size or selection intensity. Two 
mechanisms directing recombination are currently known (Baudat et al., 2010). The first one 
is PRDM9-independent, where recombination is concentrated at TSS and CpG islands, and 
where we observe stable patterns of recombination across generations, as seen in yeasts, 
plants, and vertebrate species such as birds. In contrast, in most mammals such as in human, 
recombination is PRDM9-directed, that is, concentrated at the positions where PRDM9 
protein is binding, away from genes, and where we observe a fast evolution of PRDM9 
binding-motifs and a divergence between close species (Baudat et al., 2010). Here, we take 
advantage of a unique sequenced cattle pedigree to characterize the patterns of RR in the 
bovine genome and to study the relationship between recombination and genomic features. 
 
Materials & Methods 
Sequence data. Whole-genome sequence data was available for a small pedigree containing 
264 Holstein-Friesian individuals. Based on filtering and processing steps described in Oget-
Ebrad et al. (2021), we selected 8.4 million SNPs for further analysis.  
CO events identification. We used the family-based approach implemented in LINKPHASE3 
(Druet and Georges, 2015) to identify CO events in the sequence data. We removed double 
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CO occurring within 1Mb, and multiple identical CO within a family to remove putative 
errors. CO intervals were then refined using ShapeIT4.1 (Delaneau et al., 2019). 
 
LD-based RR and hotspots. We used LDhelmet (Chan et al., 2012) to estimate population-
based RR and sequenceLDhot (Fearnhead, 2006) to identify recombination hotspots. 
 
PRDM9-related features. We predicted the PRDM9 binding-motifs for each allele of the 
BTA1 paralog previously characterized for the Holstein breed (Zhou et al., 2018), using the 
approach from Persikov and Singh (2014). We scanned the genome for potential binding 
locations of each of these predicted motifs with FIMO (Grant et al., 2011).  
 
Other genomic features. We used available public database to locate genomic features such 
as the transcription start sites (TSS) (Goszczynski et al., 2021), and CpG islands 
(https://hgdownload.soe.ucsc.edu/goldenPath/bosTau9/database/). Functional annotation was 
available from experiments performed in testis, including an Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq), and epigenetic data for histone marks 
(H3K27me3, H3K4me3, H3K4me1, H3K27ac) and for one DNA-binding protein (CTCF).  
 
Results 
Broad-scale variation of RR. We identified 6,644 CO events (3,895 for males and 2,749 for 
females; median length: 3.9kb) with the family-based approach and characterized 12,776 LD-
based hotspot regions (median length: 1.5kb; RR=4.1/kb in the hotspots vs. 0.18/kb as whole-
genome average), the latter representing 0.97% of the genome. Thirty-eight percent of the CO 
overlapped with LD-based hotspots (40.6% in males, 34.8% in females) and more than 50% 
were within 5kb from the hotspots (Figure 1). This proportion was highly significant 
compared to random sets of CO events (p-value < 0.001; 2.4% overlap on average with 1000 
simulations). We also observed that both CO and hotspots density were higher at telomeres.  
 
 

  
Figure 1. Percentage of CO events (red) identified with the family-based approach in 
males and females as a function of the distance (in kb) from the closest hotspot from the 
population-based approach, compared to 1000 simulated random sets of CO matching 
in number and size (grey for quantiles, black for median). 
 
Fine-scale variation of RR. In our population, we observed the five alleles of the BTA1 
PRDM9 paralog previously described by Zhou et al. (2018) at following frequencies: 12.3% 
for allele 1, 51.1% for alleles 2 and 3, 23.1% for allele 4, and 13.4% for allele 5. A total of 
149,620 PRDM9 predicted motifs were identified in the genome. Although we observed 
increased RR around these motifs (Figure 2a), only 11.3% of the LD-based hotspots 
contained at least one motif. We observed reduced RR close to TSS (Figure 2b) and 
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increased RR in CpG islands (Figure 2d). RR were higher in accessible DNA regions 
(ATAC-seq peaks, Figure 2e) and in CTCF signals. Methylation marks from active 
promoters (H3K4me1 and H3K27ac) presented lower RR. We observed a strong increase of 
RR in the H3K4me3 methylation mark (Figure 2f). This was specific to assays performed in 
testis and not observed with ATAC-seq data from other tissues (e.g., liver). Some of these 
associations were also observed with the set of identified CO (Figure 2c), with no striking 
difference between males and females, although the patterns were less clear than with the 
population-based approach.  
 
 

 
 

   
Figure 2. Recombination rates (RR) as a function of the distance (in kb) from the closest 
(a) BTA1 PRDM9 predicted binding-motif for alleles 1, 2 & 4, (b-c) transcription start 
site (TSS), (d) CpG island, (e) ATAC-seq peak, and (f) H3K4me3 signal. RR were 
estimates from the population-based approach, except in (c).  
 
Discussion 
In cattle, association between PRDM9 and individual RR and CO events location (at 
relatively broad scale) has been previously reported, as in human and mice. Meiotic 
recombination has been indeed previously studied in cattle with sparser marker maps (Ma et 
al., 2015). Based on whole-genome sequence data, our findings further support the role of 
PRDM9 in this species. First, we observed the presence of recombination hotspots (median 
length: 1.5kb) in cattle, as in human and mice (Baudat et al., 2010). These recombination 
hotspots represent 0.97% of the genome (1.7-1.9% in human (Kong et al., 2010)). They were 
significantly overlapping with identified CO, suggesting that the historical hotspots are still in 
use in the present population. Then, we observed increased RR around BTA1 PRDM9 
binding-motifs, as well as a small proportion of hotspots (11.3%) containing at least one 
PRDM9 binding-motif. This relatively low proportion (10.1% expected with random location) 
might result from inaccuracies in hotspots identification or in binding-motif predictions. The 
hotspots might also be associated with other PRDM9 alleles that we did not identify, for 
instance alleles associated with the PRDM9 paralogue on BTAX or alleles that are no longer 
present in the population. Overall, when multiple PRDM9 alleles contribute to recombination 
hotspots, motifs enrichment analysis might fail to identify specific PRDM9 alleles. Finally, a 
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strong increase of RR in the H3K4me3 methylation mark was observed. This mark is known 
to be deposited by PRDM9 after binding DNA and is mandatory for the initiation of the 
recombination process (Diagouraga et al., 2018), further supporting the implication of 
PRDM9 in meiotic recombination in cattle. 
 
More generally, we found that RR increased in CpG islands and in open chromatin regions as 
seen in human (Halldorsson et al., 2019), and decreased in regions associated to active 
promoters. CO would thus be kept away from genes and motifs should evolve rapidly; the 
recombination landscape could thus differ among breeds or between closely related species. 
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