
Rare CNVs in the bovine genome are not captured well by 50K density genotyping array 
SNPs 

 
Y.L. Lee1*, M. Bosse1, W. Coppieters2,3, R.F. Veerkamp1, L. Karim3, C. Oget-Ebrad2,  

T. Druet2, M.A.M. Groenen1, M. Georges2, A.C. Bouwman1, C. Charlier2 
 
1 Wageningen University & Research, Animal Breeding and Genomics, P.O. Box 338, 6700 
AH Wageningen, the Netherlands 2Unit of Animal Genomics, GIGA-R & Faculty of 
Veterinary Medicine, University of Liège, 4000 Liège, Belgium 3GIGA Genomics Platform, 
GIGA Institute, University of Liège, 4000 Liège, Belgium *younglim.lee@wur.nl  
 
Abstract 
Understanding how genomes, particularly genetic variants, instruct animals to develop and 
function is crucial for animal breeders. Copy number variants (CNVs), the gain or loss of 
DNA segments, can affect gene expression and alter phenotypes. However, most large-scale 
genetic analyses in animal breeding use single nucleotide polymorphism (SNP) genotypes 
from genotyping arrays, and efforts to incorporate CNVs are limited. In theory, variation from 
CNVs can be captured by SNPs, if they are in high linkage disequilibrium (LD). We 
evaluated the LD of CNV-SNP pairs in whole genome sequencing and genotyping array data. 
Our whole genome sequencing data showed that most CNVs have tagging SNPs. However, 
CNV-SNP pairs from genotyping array data were mostly in low LD, because most CNV-SNP 
pairs had unmatching allele frequencies. We conclude that most rare CNVs may not be fully 
captured by genotyping arrays. 
 
Introduction  
Bovine genomes harbour diverse types of genetic variants. Identifying and utilizing impactful 
genetic variants is of prime interest for animal breeders, given the economic importance of 
cattle populations. Copy numbre variants (CNVs) are a subset of structural variants, which 
include deletions (DELs) and duplications (DUPs) of DNA segments larger than 50 bp. 
Although CNVs are not as abundant as small genetic variants (e.g. SNPs), CNVs contribute 
disproportionally more to gene expression than SNPs (Chiang et al., 2017; Scott et al., 2021), 
hinting that they could be associated with phenotypes. Recent reports in farm animals, which 
unravelled high impact CNVs as causative variants underlying QTL of complex traits, also 
support the importance of CNVs (Lee et al. 2021; Derks et al. 2018; Kadri et al. 2014). 
 
Despite the functional evidence of CNVs, their utilization in animal breeding is limited. To 
date, large-scale routine genetic analyses in breeding programmes, such as genomic 
prediction, have mostly focused on SNPs obtained from genotyping arrays. In theory, if those 
SNPs are in high LD with CNVs, the variation from CNVs can be captured by SNPs. To this 
end, we aimed at (i) detecting CNVs in deeply sequenced genomes of Holstein Friesian (HF) 
cattle, (ii) validating a subset of CNVs in an independent cohort using a direct genotyping 
approach, and (iii) evaluating pairwise LD in CNV-SNP pairs in whole genome sequencing 
(WGS) and genotyping data. 
 
Materials & Methods  
WGS data. A family cohort (DAMONA) consisting of 266 HF animals (including 127 trios) 
was sequenced using the Illumina HiSeq 2000 instrument. The data was aligned using BWA 
mem (version 0.7.9a-r786) (Li 2013) to the bovine reference genome ARS-UCD1.2 (Rosen et 
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al. 2020). All samples had a minimum mean sequencing coverage of 15X, and the mean 
coverage was 26X. 

SNP and CNV discovery in the WGS data. SNP variant calling was done using the GATK 
workflow (v4.1.7), and recalibrated using the following algorithms: BaseRecalibrator, 
HaplotypeCaller, GenomicsDBImport, GenotypeGVCF, GatherVcfs, Variant Recalibrator 
(DePristo et al. 2011; McKenna et al. 2010; Auwera et al. 2013). Variant Quality Score 
Recalibration (VQSR) at a truth sensitivity filter level of 97.5 was used to remove spurious 
variants. CNVs were detected using the Smoove pipeline, which utilized split and discordant 
reads evidence to discover CNVs in each sample, followed by population-wide genotyping 
(https://github.com/brentp/smoove). Subsequently, we used the fold-coverage change of read 
depth in CNVs to retain accurately genotyped biallelic CNVs, using Duphold (Pedersen and 
Quinlan 2019). 
 
Genotyping data. To validate CNV discovery results, we genotyped a subset of CNVs by 
adding them in the custom part of the EuroGenomics SNP genotyping array, which harbours 
~50K SNPs (Boichard et al. 2018). Probes targeting breakpoint sequences of 372 CNVs (342 
deletions and 30 duplications) that appeared in non-repetitive regions, were added. 
Genotyping was done for 815 independent HF animals using their ear punch or blood 
samples.  
 
LD analyses. Pairwise LD (r2) for CNV-SNP pairs was calculated, to evaluate whether CNVs 
had tagging SNPs. This analysis was done separately for the WGS and EuroGenomics array 
data sets. SNPs located within 100-kb distance from CNV breakpoints (WGS) or CNV probes 
(array) were considered for LD calculation. Additionally, LD decay was compared between 
CNV-SNP and SNP-SNP pairs limited to the Eurogenomics array data. This analysis was 
done for common (allele frequency≥0.05) and rare (allele frequency<0.05) DELs separately. 
Due to a limited number, DUPs was not considered (n=19). The LD calculation was done 
using the PLINK software (Purcell et al. 2007). 
 
Results  
Overall variant discovery in the WGS data set. The SNP variant calling pipeline resulted in 
11,030,905 SNPs from the 266 sequenced samples. Using the same WGS data set, we 
discovered 13,731 CNVs (12,200 deletions and 1,531 duplications). Genotyping accuracy of 
CNVs is lower than that of SNPs (Chiang et al. 2017). Hence, we applied read-depth based 
filters, resulting in 4,011 accurately genotyped biallelic CNVs (3,827 deletions and 184 
duplications). 
 

 

https://github.com/brentp/smoove


Figure 1. Minor allele frequency spectra of CNVs and SNPs obtained from the 
EuroGenomics array. 
 

Validation of CNVs using genotyping arrays. We validated a subset of WGS CNVs, using a 
direct genotyping approach in 815 HF animals. All genotyped samples had a sample call rate 
> 0.99). Of the 284 CNVs that passed the variant level filter, 229 were segregating (210 
deletions and 19 duplications), showing a validation rate of 80% (229/284). The SNP 
genotyping results showed that 50,342 SNPs were segregating in the population. The minor 
frequency spectrum of CNVs was skewed towards rare variants, whereas that of SNPs were 
skewed towards common variants (Figure 1). 
 
LD analyses in the WGS and the genotyping data. To evaluate whether WGS CNVs have 
tagging SNPs in WGS data, we calculated the LD of CNV-SNP pairs. A majority of biallelic 
WGS CNVs (97% of DELs and 93% of DUPs) had at least one WGS SNP in LD (r2>0.8) 
within a 100-kb distance from the CNV. However, the same analyses based on the 
EuroGenomics array data revealed that only 15.4% of DELs and 4.5% of DUPs included on 
the array had a tagging array SNP (r2>0.8) within a 100-kb distance. Lastly, the LD in the 
EuroGenomics array data confirmed that the CNV-SNP pairs have low LD than SNP-SNP 
pairs (Figure 2; analyses was done limited to DELs, due to low numbers of DUPs). 
 

 
Figure 2. LD decay patterns in DEL-SNP and SNP-SNP pairs 
 
Discussion  
A large percentage of the CNV in our WGS data set were well tagged by at least one WGS 
SNP. In a human study, only ~80% of CNVs had at least one tagging SNPs, based on low-
pass WGS data (4-7X coverage; Sudmant et al. 2015). The higher LD in our data set is likely 
due to (i) high relatedness among the animal samples, as opposed to the non-related human 
samples in Sudmant et al. (2015), and (ii) deeper WGS data in our study. The deeper WGS 
contributed to more accurate genotyping of CNVs, which may have resulted in higher LD 
between CNV and SNP genotypes. 
 
The LD between CNV and SNP in our array genotyped data set was low. The frequency 
spectra of CNVs and SNPs were discordant: CNVs were skewed towards rare variants, 
whereas SNPs were enriched for common variants. Thus, only a small fraction of CNVs, with 
high allele frequencies, was tagged by SNPs in the EuroGenomics array. Furthermore, the 
generally low LD in CNV-SNP pairs compared to SNP-SNP pairs confirmed previous 
findings based on the Illumina BovineHD Genotyping BeadChip data (Figure 2; Lee et al. 
2020). 
 



Taking these results together, we conclude that most CNVs have tagging SNPs, which can be 
identified in deep WGS data. However, such tagging SNPs may not be present in genotyping 
arrays, as arrays tend to harbour common SNPs. This, in turn, suggests that a small fraction of 
CNVs, segregating at high frequency, may be tagged well by SNPs in the genotyping arrays. 
However, most CNVs are rare, and hence not properly captured with the set of SNPs in 
genotyping arrays. To mitigate this gap, we propose to utilize the WGS CNV catalogue to 
prioritize likely functional CNVs, particularly rare ones, and directly genotype them. 
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