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Abstract 
Understanding gene expression in sheep can offer numerous opportunities to investigate the 
genomic control of health and productivity, and can help to inform future breeding programs. 
This study aims to identify transcriptionally active genes associated with growth through the 
analysis of RNA-sequencing (RNA-seq) data in Texel x Scottish Blackface sheep. Gene 
expression levels were estimated across tissues and developmental stages and allele-specific 
expression analysed. Tissue- and developmental stage-specific differences in gene expression 
were observed. Between day 100 of gestation and one week of age, differentially expressed 
genes related to muscle growth and development, were upregulated including COL2A1 and 
CDCA8 in liver and MYH3, GDF5 and COL9A2 in skeletal bicep muscle. Allele-specific 
expression analysis revealed genes exhibiting allelic imbalance in gene families related to 
growth. Integration of these results with GWAS data will assist the identification of expressed 
variants that are associated with growth traits in sheep. 
 
Introduction  
To meet future food production targets, and provide sufficient protein derived from red meat 
for a growing global population, improving the efficiency of sheep production is paramount. 
Growth traits in sheep are important for production and are often polygenic (Moghaddar et al. 
2019), making the identification of trait-specific markers for genomic selection challenging. 
Genomic studies have accelerated the identification of key genes and variants of interest for 
growth traits, such as the mutation in the 3’UTR region of the myostatin gene associated with 
the double-muscling phenotype in Texel sheep (Clop et al. 2006). Investigation of the sheep 
transcriptome can offer insight into how gene expression influences growth traits, by 
measuring, for example, the up- or down- regulation of genes involved in muscle growth and 
differentiation through pre and postnatal development. This study aims to identify 
transcriptionally active genes associated with growth through the analysis of RNA-seq data 
across different developmental stages and tissue types in Texel x Scottish Blackface sheep.  
 
Materials & Methods  
 
Animals. 
A dataset consisting of 48 samples from three prenatal and four postnatal developmental stages 
from Texel x Scottish Blackface sheep was generated for tissues associated with growth and 
development. The tissues used in this study were collected for the sheep gene expression atlas 
project (Clark et al. 2017). Prenatal time points: Day 23 whole embryo (n=3), day 23 maternal 
caruncle (n=2); Day 35 liver (n=3), placentome (n=2), maternal caruncle (n=2) and Day 100 
liver, ovary, skeletal bicep muscle (n=4), placentome (n=2). Postnatal time points: Newborn 
liver (n=3), skeletal bicep muscle (n=3), ovary (n=2); One week of age liver (n=3), skeletal 
bicep muscle (n=3), ovary (n=2) and eight weeks of age liver (n=3), skeletal bicep muscle 
(n=3). 
 



RNA extraction and sequencing.   
RNA was extracted from <100mg of -80°C frozen tissue samples using Trizol after 
homogenisation with ceramic beads. Samples with an RNA integrity number > 6 were selected 
for RNA-seq and were sequenced by Novogene (Cambridge, United Kingdom) using the NEB 
Next® Ultra™ RNA Library Prep Kit. Libraries were sequenced on the NovaSeq 6000 platform 
(Illumina®, United States) at an expected depth of 60 million reads per sample with 150bp 
paired end reads. 
 
Transcriptome analysis. 
After trimming and quality control, mapping of the RNA-seq data to the Oar_rambouillet_v1.0 
(GCA_002742125.1; v103) assembly was performed by HISAT2 (v2.1.0) using standard 
parameters (Kim et al. 2019). To estimate RNA transcript abundance, transcript per million 
(TPM) counts were quantified with Kallisto (v0.44.0) (Bray et al. 2016). Based on the TPM 
estimates, gene-gene network analyses were performed in Graphia (v2.1) (Freeman et al. 2020). 
Functional gene enrichment using EnrichR (Chen et al. 2013) in  RStudio (R v.3.6.1) was 
performed for the first 20 gene clusters generated from the gene-gene network analysis.  
 
Differential gene expression.  
Differential gene expression between prenatal day 100 of gestation and postnatal one week of 
age was analysed using DESeq2 (Love et al. 2014), and the non-averaged transcript abundance 
counts per tissue type from Kallisto for liver and bicep muscle tissue. A likelihood ratio test 
(LRT) was used to compare a reduced model across each time point per tissue. The thresholds 
used for the reduced LRT model analysis included a p-adjusted value (padj) <0.1 and a log2 
change (log2FC) of 5. DESeq2 results were visualised in R studio using EnhancedVolcano 
(Blighe et al. 2021). 
 
Allele-specific expression. 
In brief, allele-specific expression (ASE) analysis was conducted on all 48 RNA-seq samples. 
Reference mapping bias and ASE analysis was performed as previously described (Salavati et 
al. 2019). The Liptak score (transformed z score value) from the GeneiASE output (Edsgärd et 
al. 2016) was used as the proxy for the level of allelic imbalance. 
  
Results 
 
Transcriptome analysis. 
Gene-gene network analysis revealed large clusters of genes exhibiting tissue-specific 
expression in ovary, liver and skeletal bicep muscle tissues (Figure 1a and 1b). For skeletal 
bicep muscle tissue the genes within cluster four showed high expression levels at day 100 of 
gestation, and cluster five showed high expression levels in newborn to one-week-old lambs. 
Functional gene enrichment for cluster four showed associations of genes within this cluster 
with GO terms for muscle fibre organisation and development, and cluster five showed 
associations for muscle fibre organisation and contraction. The Myostatin (GDF8) gene, in 
cluster four, for example, which controls muscle development, showed increased expression at 
day 100 of gestation relative to the other developmental stages.  
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. (a) Gene-gene network analysis showing large clusters of genes exhibiting tissue- 
and developmental stage-specific gene expression. Clusters are labelled according to the 
tissue type with the highest expression level for that cluster, with a Pearson correlation 
matrix (positive only) of 0.831 and a MCL granularity of 2.2, with the removal of 
components with a size ≤ 5.  (b) The eight largest clusters with the number of nodes (genes) 
and the associated tissue type. 
 
Differential gene expression.  
Rather than presenting all comparisons for differential gene expression analysis, here we focus 
on liver and skeletal bicep muscle tissue between one prenatal time point (day 100 of gestation) 
and one postnatal time point (one week of age). For liver tissue, comparing day 100 of gestation 
and one week of age showed 12% upregulated and 7.9% downregulated genes. In skeletal bicep 
muscle tissue, 23% of genes were upregulated and 23% were downregulated. Some 
differentially expressed genes associated with growth had a log2FC>5 (Figure 2). Genes in 
families associated with growth such as the myosin, TGF-beta and fibrillar collagen families 
were identified in skeletal bicep muscle tissue. This included the upregulation of the genes 
MYH3, GDF5 and COL9A2. In liver tissue, genes in the fibrillar collagen family were also 
upregulated, such as the COL2A1 gene.  
 

 
Figure 2. Volcano plots for prenatal time point day 100 of gestation and postnatal one 
week of age in (a) liver and (b) skeletal bicep muscle tissue, showing differential gene 
expression using DESeq2. 
 
Allele-specific expression. 



Within the top 20 highest liptak scores, for allelic imbalance, the genes ACTB and ANXA2 
showed a liptak score of ~946 for a day 100 of gestation sample and ~641 at a one week of age 
sample, respectively, in liver. For skeletal bicep muscle tissue, the genes ACTB, IGF2 and 
MYH2 had liptak scores of ~813 for a day 100 of gestation sample, ~408 for a day 100 of 
gestation sample and ~334 for a one week of age sample respectively. These genes were found 
to be members of gene families associated with growth, including either the actin, annexin, 
insulin family of polypeptide growth factors and myosin family of genes. 
 
Discussion  
Improved understanding of the sheep transcriptome provides opportunities to incorporate gene 
expression information in genomics enabled breeding programmes for sheep (Yuan et al. 2021). 
The initial results from this study identified large tissue-specific clusters of genes associated 
with growth and development. Differential gene expression analysis revealed upregulation of 
genes from both the collagen and myosin families, between pre and postnatal time points 
consistent with previous RNA-seq transcriptome studies (Clark et al. 2017). Differential gene 
expression and initial ASE analysis showed that genes within the myosin and TGF-beta 
families, including MYH2, MYH3 and GDF5, exhibited significant allelic imbalance and/or 
upregulation in developing skeletal bicep muscle tissue, with MYH3 associated with growth 
traits in cattle (Xu et al. 2014). Integration of our results with available eQTL datasets for tissues 
associated with growth (Yuan et al. 2021), and with information from GWAS, will identify 
expressed variants located in genomic regions associated with growth traits, which can be 
exploited in genomics-enabled breeding programmes for sheep. This work was funded by 
BBSRC award number BB/S01540X/1.  
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