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Abstract 
Structural variants (SV) have gained increasing interest within the last years. However, calling 
SVs from array genotypes or short-read data is known to suffer from high false-positive rates 
and low specificity at the same time. In contrast, long-read technologies  promise to derive 
accurate and sensitive SV callsets. We hereby present the first study that uses PacBio and Na-
nopore long-reads to derive quantitative estimates of the amount of SVs in chicken, based on 
four trios. We estimated the mean size of the reference genome affected by at least heterozygous 
SV calls to range from 0.2% for insertions to 0.7% for deletions. We further compared the 
results to a short-read based calling approach. This revealed more than 2/3 of short-read based 
initial SV calls not being backed by long-read based calls, while more than 50% of the long-
read based calls would have been missed by the short-read approach. 
 
Introduction 
During the last years, some prominent phenotypes were shown to be causally affected by struc-
tural variants (SV), e.g. different comb phenotypes in chickens (Imsland et al., 2012). Effects 
of SV may, however, be missed by analyses based on single nucleotide polymorphism (SNP) 
markers, as linkage disequilibrium between SVs and neighbouring marker SNPs is not neces-
sarily high (Geibel et al., 2021). This has driven the interest in identifying SVs along the ge-
nome. SV calling so far was mostly based on SNP-array data or short-read sequence data, and 
heavily relied on auxiliary information like probe intensity, coverage, insert size distributions, 
split reads, or local assembly. This led to high false positive rates and low specificity at the 
same time, especially when calling insertions (INS; Delage et al., 2020), or SVs in repetitive 
regions (Belyeu et al., 2021). Previous estimates of the SV content of chicken genomes there-
fore varied massively and reached estimates up to 12.84% of the autosomal genome size (Fer-
nandes et al., 2021). 
Many problems of calling SVs from short reads can be overcome by using long reads from 
Oxford Nanopore Technologies (ONT) or Pacific Biosciences (PacBio) sequencing, which are 
nowadays considered to strongly improve SV identification  (Ho et al., 2019; Sedlazeck et al., 
2018b). However, studies identifying SVs based on long read technologies in chickens have 
not been published to this date. 
The goal of this study was to provide a reliable quantitative estimate of the affectedness of the 
chicken genome by SVs using long-read sequencing of four chicken trios. We further verified 
how many of these structural variants would have been discovered by short-read sequencing, 
providing an insight into the false-positive and false-negative rates of the latter approach. 
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Materials & Methods 
For the discovery of SVs, four chicken trios were sequenced. The trios were from a commercial 
White Leghorn line (WLA), a commercial Rhode Island Red line (BLA), a New Hampshire 
line (L68) and the intercross of an Araucana x WLA backcross experiment. Sequencing was 
done using Illumina short read sequencing (13 – 42X, 2*151bp), ONT sequencing (6 – 22X; 
3 – 22kb mean read length) and PacBio HiFi sequencing (3 – 25X; 16 – 22kb mean read 
length). Note that for the BLA trio, a fullsib of the offspring chicken, which was sequenced by 
Illumina and PacBio, was sequenced with ONT due to a shortage of available DNA. 
SV calling was performed separately for the different sequencing techniques. The short reads 
were mapped against GRGC6a by bwa-mem (Li, 2013) and SVs were called by a consensus 
calling approach that involved parallel SV calling by delly (Rausch et al., 2012), manta (Chen 
et al., 2016) and lumpy (Layer et al., 2014), followed by feeding the union of the SV calls into 
svtyper (Chiang et al., 2015) for genotyping. As svtyper is not able to genotype INS, only the 
calls of manta were considered for INS. Non-default filters for the short read data were not 
applied at this stage, as the main intention was to see whether short-read data would have pro-
vided support for SVs found by long reads. Long reads (PacBio and ONT) were mapped by 
ngmlr (Sedlazeck et al., 2018a), followed by SV calling and genotyping through sniffles (Sed-
lazeck et al., 2018a), requiring a threshold of at least five supporting reads. Long-read-based 
SV detection was performed for the technologies separately as well as based on merged bam 
alignment files (LRcombined). Finally, a merged VCF was produced for further analysis, using 
survivor (Jeffares et al., 2017) together with custom awk scripts to account for incompatibilities 
between the different tools. To account for bad breakpoint resolutions, SV of the same type 
with breakpoint differences of 1kb or less were further merged into one SV. Analyses were 
thereby limited to autosomal deletions (DEL), duplications (DUP), insertions (INS), and inver-
sions (INV) between 50bp and one Mb. Note that these are early stage results, which will re-
quire further validation, e.g. by assessing Mendelian errors in the trios. 
 
Results and Discussion 
The short-read based consensus calling approach (SRconsensus) identified a total of 32,111 
SVs (15.6k DEL, 6.9k DUP, 6.6k INS, 2.9k INV), while 18,487 SVs were identified by the 
combined set of PacBio and ONT reads (LRcombined; 8k DEL, 1.2k DUP, 8.8k INS, 445 INV). 
Figure 1 shows the overlap between the different callsets. It is remarkable that more than 50% 
of the LRcombined SVs (10.5k) did not show even modest support in the SRconsensus set, 
while 2/3  of the SRconsensus SVs (21.6k) were not supported by long-read based calls. This 
indicates the known limitations of relatively non-sensitive and unreliable short-read calling al-
gorithms requiring high manual curation effort (Belyeu et al., 2021). However, against expec-
tation (Delage et al., 2020), more than 50% of the INS calls by manta were supported by long 
reads. Further, only very few DUP (1,244) were supported by the LRcombined set with close 
to no overlap to the SRconsensus set. This might partly be due to the fact that a high share of 
raw DUP calls in short-read data sets is expected to stem from mapping errors in badly assem-
bled repetitive regions (Geibel et al., 2021), which might be better resolved by long reads and 
called as INS rather than DUP then.  
Generally, increasing the depth by combining the long-read sets improved the confidence in 
variant calls and 4k SVs were only discovered in the LRcombined set. Interestingly, slightly 
fewer SVs (3.3k) were called when only the PacBio set was used, but no longer when combining 
the sets. This might be a calling artefact, as sniffles has a special HiFi mode that trusts mappings 
with more confidence, but which could not be used for LRcombined, as LRcombined also in-
cluded less accurate ONT data. Anyway, this needs further investigation. 



 

 
Figure 1: Upset plot showing the overlap between the callsets. Colours in the top plot indi-
cate the proportion of SV types in the intersection. Colours in the intersection matrix instead 
indicate whether the SVs were found by long reads solely (blue), short reads solely (red) or by 
both techniques (black).  

 
The length of the called SVs was only investigated for the most reliable set, LRcombined. 
Length distributions of the SVs (Figure 2 A) spanned the complete investigated range between 
50bp and one Mb, with lengths >100kb (DUP and INV) respectively >10kb (DEL and INS) 
being rare events. Median sizes of 913bp (DUP), 379bp (INV), 153bp (DEL), and 132bp (INS), 
however, showed that the vast majority of called SVs was even smaller than 1kb. 
We finally calculated the fraction of the autosomal reference genome that was affected by SV 
per individual (Figure 2 B). This number varied on average between 0.2% for INS and 0.7% 
for DEL. This is more than what was discovered previously by highly curated short-read based 
callsets (e.g. Geibel et al., 2021), but by far less than what array-based CNV studies regularly 
estimate (e.g. Fernandes et al., 2021). 
 

 
Figure 2: Distribution of SV lengths in the LRcombined callset (A). Percent of autoso-
mal reference genome affected by heterozygous (het), homozygous (hom), or any (sum) 
SV genotypes by SV type in the LRcombined callset for the different chicken samples 
(B). Note the log-scaled y-axes. 
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