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Abstract 
The initial release of JWAS was developed as an open-source software tool for single-trait or 
multi-trait linear mixed models including those used for genome-enabled prediction or genome-
wide association studies. We have now made extensive updates to JWAS to incorporate new 
features to accommodate high-throughput phenotypes and biological information useful in 
bridging the gap between DNA sequence and phenotypic information. The new features include 
but are not limited to: 1) Incorporating high-throughput phenotypes by simultaneous modeling 
of thousands of traits or through time-series (longitudinal trait) models; 2) Using functional 
annotation information as a-priori biological knowledge; 3) Extending mixed models to multi-
layer neural networks that can accommodate intermediate omics data. This latest version of 
JWAS (version 2) is developed for researchers in both industry and academia to take full 
advantage of new information such as high-throughput phenotypes, functional annotations, and 
multi-omics data as they become increasingly available in this decade. 
 
Introduction 
The release of the USDA blueprint for animal genomics (2008-2017) triggered the development 
of many statistical methods to improve genetic progress as well as the implementation of these 
methods in software tools such as JWAS. The initial version of JWAS (Cheng et al., 2018) was 
an open-source software tool for single-trait or multi-trait analyses accommodating those 
models used for genome-enabled prediction and genome-wide association studies, with either 
complete or incomplete genomic data, i.e., "single-step" methods (Legarra et al., 2009; 
Fernando et al., 2014; Fernando et al., 2016). A portfolio of Bayesian regression models 
including variable selection and shrinkage estimation methods were implemented in JWAS to 
provide broad scope of analyses.  
 
With the development of high-throughput sequencing and phenotyping technology, the USDA 
blueprint in animal genomics for the next decade (2018 - 2027) (Rexroad et al., 2019) has 
identified several areas requiring more advanced usage of genomic information for animal 
production. Thus, there was a need to develop statistical methods and tools that could 
incorporate high-throughput phenotyping, multi-omics data, and biological information such as 
functional annotations for genomic analyses. Extensive additional updates to our JWAS 
package were required to accommodate the issues identified in the new blueprint for improved 
utilization of genomic information. The availability of powerful and efficient statistical 
methods implemented in extensible software tools that can accommodate the advancing state 
of the art would have impacts on a wide range of breeding programs. To fill this gap, we 
extensively upgraded JWAS and released JWAS version 2. The main objective of this paper is 
to introduce new features in JWAS for researchers in industry or academia, so they can take 
full advantage of new information such as high-throughput phenotypes, multi-omics data, and 
functional annotation of animal genomes as they become increasingly available in this decade.  
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Materials & Methods 
A list of features in JWAS is shown in Table 1, and highlighted new features in JWAS version 
2 are described below. 
 
Table 1. A list of features in JWAS for single-trait or multi-trait analyses. 
                                                                     
 
fixed class or covariate effects (e.g., age, sex)                                                  
non-genomic random effects (e.g., litter, pen)                    
use of pedigree information                                                                                 
joint fitting of direct and maternal genetic effects 
permanent environmental effects   
 
use of genomic information    
                                                                                                                             

complete genomic data1                                         
Genomic BLUP 
Bayesian Alphabet 

 
incomplete genomic data2 

 
Genomic BLUP 
Bayesian Alphabet 

                                                                                                                             

biological information                                        
multi-layer neural networks3 

multi-class models3  

 
high-throughput phenotypes 

 
sparse factor models3 

random regression models3 

  
1 “Complete genomic data” indicates that genotypes are available on all individuals. 
2 “Incomplete genomic data” indicates that genotypes are not available on all individuals 
("single-step" analyses).  
3 These new features are described in the Materials and Methods section.   
  
Mixed models extended to multi-layer neural networks including intermediate omics data. 
With the growing amount and diversity of intermediate omics data complementary to genomics 
(e.g., measures of DNA methylation, gene expression, and protein abundance), there is a need 
to develop methods to incorporate intermediate omics data into genome-enabled prediction and 
association studies to enhance conventional genomic evaluation. We have implemented a new 
method NN-LMM (Zhao et al., 2021a; Zhao et al., 2021b) to model the multiple layers of 
regulation from genotypes to intermediate omics features, then to phenotypes, by extending 
conventional linear mixed models to multi-layer artificial neural networks. NN-LMM 
incorporates intermediate omics features by adding middle layers between genotypes and 
phenotypes. Linear mixed models (e.g., pedigree-based BLUP, GBLUP, Bayesian Alphabet, 
single-step GBLUP, or single-step Bayesian Alphabet) can be used to sample marker effects or 
genetic values on intermediate omics features, and activation functions in neural networks are 
used to capture nonlinear possibly unknown relationships between intermediate omics features 
and phenotypes.  
 



Using functional annotation information as a-priori biological knowledge. In addition to 
phenotypic, genomic, and pedigree data, massive amounts of biological information are being 
generated by the scientific community. For example, the Functional Annotation of Animal 
Genome (FAANG) consortium is functionally annotating genomic regulatory elements of 
domesticated animal species. However, such biological information is not generally considered 
in genomic prediction that routinely uses phenotypic information along with pedigree and SNP 
genotypes. We have implemented multi-class models (Wang et al., 2021) in JWAS version 2 
to allocate markers into different classes based on biological information and assigning separate 
priors to markers in these different classes. This is implemented for single-trait or multi-trait 
analyses. 
 
Incorporating high-throughput phenotypes by simultaneous modeling of thousands of traits 
through sparse factor models. Large-scale phenotypic data are becoming increasingly 
accessible due to advances in high-throughput phenotyping platforms and technologies for 
multi-omics profiling. Although the incorporation of large-scale phenotypic data into genome-
enabled analysis can enhance the power of prediction and association inference, genomic 
analyses of high-dimensional, highly correlated data are challenging. We have implemented a 
Bayesian sparse factor model (Runcie et al., 2021) with different prior assumptions on marker 
effects to simultaneously analyze hundreds to thousands of traits for genomic prediction or 
GWAS. This Bayesian sparse factor model can effectively reduce a large multi-trait model into 
a set of parallel single-trait models by introducing the concept of latent traits, i.e., traits that are 
not directly observed, but can be inferred based on their effects on the observed traits. This 
model is based on some biologically reasonable assumptions including 1) a limited number of 
the latent traits control the majority of variation; 2) each latent trait controls only a subset of the 
observed traits; 3) each latent trait is controlled by genetics and the environment. 
 
Incorporating high-throughput phenotypes through time-series (longitudinal trait) models. 
In animal and plant improvement, longitudinal traits may be recorded across several time points 
on a physiological cycle, and might be jointly analyzed to improve the performance relative to 
an analysis at one time point. The recent advancement in phenotyping platforms enables 
acquisition of large-scale non-destructive phenotypes measured at frequent intervals. In 
pedigree-based analyses, the use of random regression models (RRM) has been a typical 
approach employed for such analyses of longitudinal traits (Henderson, 1982); Laird and Ware, 
1982). We have implemented Bayesian random regression models for marker effects that can 
accommodate variable selection for the analysis of longitudinal data that would accrue through 
high-throughput phenotyping. 
 
Results  
The JWAS software tool was and is being developed as a single-language software tool that is 
easy for both champions and novice community members to use, maintain, modify, or extend. 
In terms of speed, for the same BayesC analysis, JWAS is now faster than the C++ program, 
GenSel. Further, JWAS is relatively easy to extend: to accommodate categorical traits in JWAS 
required adding only about 40 lines of code; to extend conventional Bayesian regression 
methods to single-step analyses required adding one file composed of a few hundred of lines of 
code and a few minor modifications to the original code.  
 
Discussion 
Whole-genome analyses are usually computationally intensive even for data sets of moderate 
size. Although these analyses can be implemented with most dynamic languages such as R or 
Python with very readable code that is easy to understand, modify and extend, they are often 



too slow for real data analyses. Therefore, for computational efficiency, compiled languages 
such as C, C++, or Fortran have historically been used to implement methods for genomic 
analyses. In order to make these more accessible, a dynamic language such as R may be used 
as a user interface to the underlying methods that are written in the compiled language. The 
problem of using compiled languages, however, is that they are usually hard to understand, 
modify, extend and maintain, in addition to being difficult to readily deploy across different 
operating systems. Julia (Bezanson et al., 2017), a relatively new scientific programming 
language, approaches the computing speed of compiled languages, but retains the benefits of 
dynamic language. 
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