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Abstract 
We compared the effects of using three genomic relationship matrices and a pedigree based 
relationship matrix for optimum contribution selection (OCS) with a constraint on number of 
sires selected, on genetic gain, kinship and additive genetic variance. This was done by 
simulating a genomically selected small dairy cattle population. The cattle population 
underwent genomic selection for 11 generations. In total, 6,000 females and 2,500 males were 
genotyped per generation. We compared a pedigree-based matrix as well as VanRaden’s 
method 1 to construct genomic relationship matrices using either allele frequencies of the base 
population, of the current generation, or allele frequencies among all genotyped animals. The 
pedigree-based OCS resulted in higher kinship and more loss of genetic variance than using 
genomic OCS based on base population frequencies. Thus, genomic OCS with genomic 
relationship matrices using base population frequencies are preferable compared with pedigree-
based OCS.  
 
Introduction  
Genomic selection has increased genetic gain in dairy cattle in recent years, but in some cases 
at the cost of higher inbreeding rates (Makanjuola et al. 2020). Small local breeds that are not 
genomically selected have become increasingly less competitive to the transboundary breeds. 
However, simulations have shown that small dairy cattle populations can also benefit from 
genomic selection (Thomasen et al. 2014; Obšteter et al. 2019), but research is lacking on ways 
to balance genetic gain and inbreeding in small populations. To achieve genetic gains through 
selective breeding in future generations, genetic diversity must be preserved. Inbreeding has to 
be managed to avoid inbreeding depression. This is not least the case in small populations. 
Optimum contribution selection (OCS; Meuwissen 1997) maximizes genetic gain while 
restraining inbreeding. OCS has been implemented using pedigree relationships (POCS), but 
genomic OCS (GOCS) can be an alternative by using a genomic relationship matrix (GRM). A 
common way to form GRMs is VanRaden’s method one (VanRaden 2008). This method scales 
the cross-product of centered genotype scores by ∑2p(1-p), where p is the marker allele 
frequency. The choice of reference allele frequencies to use is an important parameter to 
consider when constructing GRMs. VanRaden (2008) recommended the use of base population 
frequencies. Berg et al. (subm.) found important differences in results depending on the type of 
reference used for GOCS. The aim of this study was to compare four scenarios, three different 
allele frequencies to construct GRMs and the pedigree based relationship matrix, on genetic 
gain, kinship and additive genetic variance in a small dairy cattle population undergoing 
genomic selection.  
 
Materials & Methods 
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The simulations were modelled to mimic the breeding program of the Icelandic Cattle 
population (Sigurdsson and Jonmundsson 2011). QMSim (Sargolzaei and Schenkel 2009) was 
used for simulating a base population. The R package Modular Breeding Program Simulator 
(MoBPS; Pook et al. 2020) was used for breeding program simulations. We used GMATRIX 
(Su and Madsen 2012) to construct GRMs. EVA (Berg et al. 2006) was used to optimize genetic 
contributions of selection candidates. DMU (Madsen and Jensen 2013) was used to estimate 
breeding values. 
 
Historical population. We simulated a genome of 29 chromosomes each with 2,000 evenly 
spaced loci. The mutation rate was 2.5×10-5 per locus per generation. For each replicate of 
scenarios, a new historical population was simulated. The population size was 1,000 individuals 
for 2,000 generations and increased over 200 generations to 12,000. Genotype data were 
converted into Plink ped format (Purcell et al. 2007) and read into MoBPS. We randomly 
sampled 2,000 segregating loci to be quantitative trait loci (QTL), which were not used for 
construction of GRM. We assigned effects to the QTL by drawing from a gamma distribution 
with shape 0.4 and scale parameter 1.66. We discarded very low frequency marker loci so that 
the genotyping markers reflected the allele frequency distribution of commercial SNP chips. 
The number of polymorphic genotyping marker loci were around 39,000 at the start of the 
genomic selection, with some variation across replicates. We simulated a sex-based trait with a 
constant heritability of 0.4. We used three replicates for each scenario. 
 
Breeding program structure and breeding value prediction. We simulated four discrete 
generations of pedigree-based best linear unbiased prediction (PBLUP) selection before 
genomic selection started. We then simulated three generations of genomic prediction using 
single-step genomic BLUP (ssGBLUP), and subsequently eight generations of GBLUP. Each 
generation contained 6,000 males and 6,000 females. Each cow had exactly two calves. In each 
generation of genomic selection, 2,500 male and 6,000 female selection candidates were 
selected for genotyping based on their parent average and their genomic breeding values 
(GEBVs) were estimated. Selection was according to optimum contribution selection, only on 
the sire side, with additional constraints described below. Dams of selection candidates had 
phenotypes at the stage of selection. The model for genetic evaluation included the additive 
genetic animal effect, an intercept and a residual: y=Xb+Za+e, where y was a vector of animal 
phenotypes, b was a vector of fixed effects, a was a vector of (genomic) estimated breeding 
values where a followed N(0, Aσg

2), N(0, Hσg
2) and N(0, Gσg

2) for PBLUP, ssGBLUP and 
GBLUP, where A was the numerator relationship matrix, H was a combined pedigree and 
genomic relationship matrix (Christensen and Lund 2010) and G was a GRM computed using 
VanRaden’s method one. X and Z were design matrices and e was a vector of random residuals 
following N(0, Iσe

2). We used the true values of variance components. 
 
Optimum contribution selection. To constrain the number of sires selected, we constructed a 
‘pseudo-female’ out of all female selection candidates. The pseudo-female had a relationship 
with itself that was equal to the mean relationship among female selection candidates, and a 
relationship with each bull that was equal to the mean relationship of all female candidates to 
that bull. The pseudo-female was assigned 30 matings, and each bull was allowed one mating. 
The 30 selected bulls were then randomly mated to females and used equally. The genetic 
contributions were optimized to achieve the same target rate of inbreeding, while maximizing 
genetic gain, and selecting a fixed number of bulls, and using them equally. Genetic 
contributions c were optimized in each generation to maximize the genetic level in the offspring 
generation, G: G=c'â where â was a vector of GEBVs, subject to the constraint: c'Rc=C where 



R was a relationship matrix, and the target rate of average coancestry was set to 0.005, and the 
constraint that the sum contributions of males and females each equaled ½ (Meuwissen 1997; 
Woolliams et al. 2015).  
We used the first method of VanRaden (2008) to compute GRMs: G = ZZT/(2∑pj(1-pj), where 
Z = M – P where M is the genotypic matrix for genotyped animals for which rows are genotypes 
with values 2 and 0 for the two homozygotes, and 1 for heterozygotes; P is a matrix where all 
elements in the jth column are 2pj, where pj is the frequency of the allele at locus j that was 
counted in M. We used three estimates of pj: Base used the allele frequencies in the base 
population, Recent used genotyped animals in the current generation, and All used all genotyped 
animals to estimate pj. Additionally, we used a pedigree-based relationship matrix (Pedigree). 
Thus the study composed of four scenarios of OCS: All, Base, Recent and Pedigree. 
 
Statistical analysis. We computed the mean true breeding value and estimated mean identical-
by-descent (IBD) based genomic kinship for the selection candidates in each generation. 
Kinship ‘represents the value of chromosome segments of two different individuals to be IBD 
at a random position when randomly drawing one of the two haplotypes of each individual’ (T. 
Pook, pers. comm.). We used the following linear model for generations six to 16: 
y = Replicate + Scenario + Scenario*Generation + error     (1) 
where y was breeding value, kinship or additive genetic variance. We used the standard errors 
of the linear regression coefficients for significance testing. The interaction term of scenario 
and generation gave a regression coefficient nested within scenario. 
 
Results 
Figure 1 shows the average results of the simulation from generation 1 to 16. Genetic gain was 
0.827, 0.846, 0.818 and 0.835 genetic standard deviations; kinship rate was 0.81%, 0.84%, 
0.73% and 0.98%; and loss of additive genetic variance was -3.0%, -3.0%, -2.9% and -3.6% 
per generation, for All, Recent, Base and Pedigree, respectively, according to the linear model. 
Pedigree-based OCS resulted in significantly higher rate of increase in kinship than GOCS 
(P<0.01), and Base resulted in significantly lower kinship increase than Recent and Pedigree 
(P<0.05). Pedigree resulted in significantly more loss of genetic diversity than genomic OCS 
(P<0.05). The difference in genetic gain among scenarios was not statistically significant. 
 
Discussion 
The results suggest that genomic OCS can outperform pedigree-based OCS, contrary to the 
conclusion of Henryon et al. (2019), but agreeing with the recommendation of Sonesson et al. 
(2012). Henryon et al. (2019) assessed inbreeding rate at a set of IBD loci not used for 
prediction, while we assessed true kinship using recombination points and founder chromosome 
segments. The faster build-up of kinship, and more rapid loss of genetic diversity observed with 
POCS, suggests that genomic OCS is preferable to pedigree-based OCS under the conditions 
in this simulation. Our results agree with results of Berg et al. (subm.). They found that distant 
reference frequencies for GOCS resulted in less build-up of kinship than using recent 
frequencies. We simulated a population with number of markers and animals resembling a 
feasible breeding scheme for the Icelandic dairy cattle population. This included simulating a 
breeding scheme that used a fixed number of bulls and equal use of these bulls. While this is a 
deviation from the theory of optimum contribution selection, we believe that this resembles a 
practical and cost-effective way for genomic breeding of a small dairy cattle population, since 
number of AI bulls is a limiting factor in a small closed population. Our results suggest that in 
such settings, GOCS should be conducted, using old animals to compute reference allele 
frequencies for the GRM. 



 

 
Figure 1. Mean breeding value, additive genetic variance and kinship. Genomic selection 
started in generation six. Breeding value is in units of additive genetic standard deviation, 
genetic variance is the proportion of variance in the base population and kinship is based on 
genomic identity-by-descent. 
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