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Abstract 

Reproductive efficiency is major driver of profitability of beef production in northern Australia. 
Failure of heifers to achieve pregnancy results in a considerable loss to producers and accounts 
for most of the reproductive costs incurred. Availability of genomic information has provided 
a noteworthy opportunity to enhance the efficiency of selection, especially for traits such as 
fertility with low heritability. Here, we used imputed whole genome sequence data and up to 
2,119 Brahman heifers in a stepwise conditional multi-trait GWAS (CM-GWAS) to identify 
pleiotropic putative causal variants and genes associated with fertility traits. We identified 
multiple genomic regions affecting fertility traits, some previously reported and some novel. 
Candidate gene findings included the genes ARHGEF28, RNF150, EPHA6. When we 
investigated the genes closest to the most significant SNP, they included CNTNAP4 gene that 
encodes a member of the neurexin protein family and PLAG1 gene. 

 
Introduction 

Over the past decade, genome-wide association studies (GWAS) have been widely used to 
identify associations of single-nucleotide polymorphisms (SNPs) with complex traits in 
livestock, especially in dairy and beef cattle (Visscher et al. 2017). Using whole genome 
sequence data can improve the power of GWAS since the causal variants should be included 
in the sequence data. However, even using whole genome sequence data, the identification of 
the causal variants for a complex trait is still difficult. This is due to the small effect size of 
most causal variants and the linkage disequilibrium (LD) between variants. Consequently, there 
are too many variants in high LD, any one of which could be the cause of the variation in 
phenotype. Causal variants are often pleiotropic, i.e. affecting more than one trait, so multi-
trait analysis might result in higher power to detect quantitative trait loci (QTL) and greater 
precision in mapping them (Bolormaa et al. 2014).  

In this study, the stepwise conditional multi-trait GWAS (CM-GWAS) analysis was performed 
to identify significant variants and genes associated with four fertility-related traits, including 
a binary trait (heifer pregnancy status) and three continuously distributed traits including fetal 
age in weeks, measured via manual palpation at pregnancy diagnosis; heifer age at first calving, 
defined as the number of days between the birthdate and calving date; and days to calving, 
defined as the number of days between the date of bull turn out at the beginning of the breeding 
season and calving date.  

 

 



Materials & Methods 
Phenotypic Data 
For this study, lifetime productivity of a Central Queensland Brahman cow herd was assessed. 
Born between 1981 and 2015, these cows and heifers were part of a stud herd that has been 
developed with a heavy emphasis on fertility, where failure to produce a calf was the primary 
culling criterion. Four fertility-related traits were considered. In these herds, heifer pregnancy 
status was recorded as a binary trait (1 = successful, 0 = unsuccessful) indicating whether a 
heifer was able to conceive prior to three years of age.  Pregnancy success was determined at 
time of yearly pregnancy check for all heifers born in 2011 and later. For heifers born prior to 
2011, calving records were used to determine pregnancy success. Among those heifers that had 
both a pregnancy test and calving record available, 6% experienced pregnancy loss after 
pregnancy check, making calving success a good approximation in cases where pregnancy 
check records were unavailable. Fetal age in weeks (hef_wks_preg) was recorded via manual 
palpation at pregnancy diagnosis for all heifers born in 2011 and later. Age at first calving 
(AFC) was only available for heifers with a recorded birth date and was calculated as the 
difference in days between first calving and birth. Days to calving (DTC) is a routinely recorded 
trait in Australia Brahmans and is defined as the number of days between the date of bull turn 
out at the beginning of the breeding season and calving date. Heifer days to calving was 
recorded as the number of days between first calving and bull exposure.  

Genotyping and Quality Control 
Heifers were genotyped with the BovineSNP50 BeadChip (Illumina, San Diego, CA). A 
detailed description of the genotype quality control was given by Hayes et al. (2019). 
Genotypes were imputed up to 728,785 SNPs (Bovine HD array) using the findhap4 software 
(VanRaden et al. 2013), and a panel of 4650 individuals from relevant breeds, including 
Brahman (300), Droughtmaster (300), Santa Gertrudis (250) and composites (1000) that were 
genotyped with the Bovine HD array. All genotypes were then imputed to 31,140,417 million 
whole-genome sequence variants using the 1000 Bull Genomes Run8, TaurIndicus reference 
(Hayes and Daetwyler 2019), with 600 Holsteins and 400 Simmental animals removed to avoid 
over-representation of these genomes in the imputation. Eagle (Loh et al. 2016) was used for 
phasing and Minimac3 software (Das et al. 2016) for imputation.  
 
Genome-Wide Association Analysis 
A linear mixed model was performed using the GCTA software (Yang et al. 2011), fitting each 
sequence variant as a covariate, one at a time, and testing for association with each trait as 
follows: 

𝒚𝒚 = 𝟏𝟏𝒏𝒏𝜇𝜇 + 𝑿𝑿𝛽𝛽 + 𝒁𝒁𝑔𝑔 +  𝑾𝑾𝒊𝒊𝛼𝛼𝑖𝑖 + 𝒆𝒆, 

 where y is the vector of phenotypic values of the animals, 𝟏𝟏𝒏𝒏 is an n × 1 vector of 1s (n=number 
of animals with phenotypes), μ is the overall mean,  X is an n × x matrix of fixed covariates, β 
is a length x vector of fixed effects, Z is a design matrix for the random additive genetic 
effects; g is a vector of random additive genetic effects assumed to be distributed as ∼N(0, 
G𝜎𝜎𝑔𝑔2), where G is the genomic relationship matrix (GRM) calculated from high-density 
genotypes using the GCTA software. 𝑾𝑾𝒊𝒊 is a vector of genotypes for each animal at the i-th 
variant, 𝛼𝛼𝑖𝑖  is the corresponding variant effect, and e is a random vector of length n as ∼ N (0, 
𝜎𝜎𝑒𝑒2I), where 𝜎𝜎𝑒𝑒2 represents non-genetic variance due to non-genetic effects assumed to be acting 
independently on animals. The choice of fixed covariate effect for continuous and binary traits 
was done using lm and glm function in R, respectively. For all four traits, year of birth and 
contemporary group were constantly considered as fixed covariates. Moreover, for trait AFC, 



calving success defined as 0 and 1, based upon whether they joined at two or three years of age 
was considered as fixed effect. Also, for trait DTC, the effect of heifer age of joining was fitted 
as continuous covariate fixed effect. The GRM was generated using variants with minor allele 
frequency (MAF) higher than 0.01 (609,878 SNPs) in the HD dataset. 

We performed a conditional multi-trait meta-analysis (CM-GWAS) according to a previously 
described approach (Bolormaa et al. 2021) using whole genome sequence (WGS) variant 
effects estimated from four single-trait GWAS to identify pleiotropic variants that affected 
fertility trait. The multi-trait meta-analysis (M-GWAS) X2 statistic with 4 degrees of freedom 
(equal to the number of traits analysed) was calculated as below: 
 
X2 = tiV−1ti , 
where ti is a vector of the signed t-values of the effects of the i-th sequence variants for the 4 
traits and V−1 is the inverse of the 4 × 4 correlation matrix where the correlation was calculated 
over all estimated sequence variants effects (signed t-values) between each pair of traits.  The 
CM-GWAS approach cycles back and forward between the single-trait GWAS for all traits and 
M-GWAS to re-test variants conditional on jointly fitting the most significant putative causal 
variants from independent QTL (where we defined significant as P < 5×10-6). To determine 
independent sequence variants, first the most significant M-GWAS variant from each 
chromosome was selected and added to the list of putative causal variants. If the pairwise LD 
between this variant and any other significant variant on the same chromosome was greater 
than 0.1, these other variants are considered as potentially tagging the same causal variant and 
were not considered as independent QTL for this cycle. Then, from the remaining significant 
variants in LD, r2 less than 0.1, the next most significant variant was selected on each 
chromosome, LD was tested between these and the remaining significant variants and so on, 
until no more significant variants identified in this cycle.  
 
Results and Discussion 
There was no indication of inflation of the test statistic due to population structure or other 
confounding effects for any of the traits (Figure 1B). To be able to identify independent putative 
causal variants we used the CM-GWAS. We selected only the most significant (‘top’) variants 
from each cycle of the CM-GWAS and identified 144 independent putative causal variants 
across the genome (P<5×10-8). Candidate genes included the genes ARHGEF28, RNF150, 
EPHA6 located in intronic region of chromosomes 20, 17, and 1, respectively. When we 
investigated the genes closest to the most significant SNP, they included CNTNAP4 gene that 
encodes a member of the neurexin protein family. Members of this family function in the 
vertebrate nervous system as cell adhesion molecules and receptors. Moreover, we discovered 
the same mutation as the one Bouwman et al. (2018) identified in a very large meta-analysis 
of height in cattle using imputed sequence data on more than 50k animals in PLAG1 gene (14: 
23300304). In this study, new potential causative mutations affecting fertility traits have been 
identified that should be incorporated into commercial SNP arrays. This should increase the accuracy 
of genomic breeding values (GEBV) for these traits, just as a similar approach has increased accuracy 
of GEBV in sheep and dairy cattle (Moghaddar et al. 2019, Xiang et al. 2019).     
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Figure 1. A. Manhattan plot of single-trait GWAS analysis for four fertility traits of heifer day to 
calving(her_DTC), heifer pregnancy success (hef_preg_success), heifer weeks pregnant 
(hef_wks_preg) and heifer age of calving (hef_age_calving) in Bos indicus cows. B. Quantile-
quantile (QQ) plot of the single-trait GWAS shown in the Manhattan plot for 4 fertility traits. 
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