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Abstract 
This study compares the performance of the Illumina BovineSNP50 BeadChip (50K chip) with 
sequence data and a novel designed breed-augmented customized 200K SNP chip (200K chip) 
in the small local dual-purpose breed German Black Pied cattle (DSN). On such genomic 
databases, we applied genome-wide association analyses and estimated genetic parameters and 
breeding values for milk production, health indicator and calving traits. Accuracies of estimated 
breeding values were calculated using a cross-validation approach. We identified significant 
SNP marker associations and candidate genes with the specifically designed 200K chip, which 
were not detected with the commercial 50K chip. The annotated genes (e.g., MGST1 for 305-
day lactation milk yield) were confirmed based on whole-genome-sequence data, indicating 
breed-specific genomic mechanisms. Heritabilities and accuracies of genomic breeding values 
increased slightly by using the novel specifically designed 200K SNP chip compared with the 
50K SNP chip.   
 
Introduction  
Marker density affects the power of genome-wide association studies (GWAS) and genomic 
estimated breeding value (GEBV) accuracy. The Illumina BovineSNP50 BeadChip with 
~54.000 markers (hereafter referred to as 50K chip) is commonly used for GWAS and genetic 
evaluations in various cattle breeds worldwide. The 50K chip is designed on a reference panel 
of large commercial populations like Holstein Frisian [HF] and Simmental. The chip works 
particularly well in breeds closely related to these reference population (Matukumalli et al., 
2009). The German Black Pied cattle breed (DSN, German: Deutsches Schwarzbuntes 
Niederungsrind) is an endangered local dual-purpose breed with a small population size of 
~2,500 cattle and considered as the founder breed of HF. However, only ~37,000 markers of 
the 50K chip are informative in DSN after filtering, which coincides with observations in other 
small cattle breeds (e.g., Hozé et al., 2013). Moreover, the well described DGAT1gene with 
major effects on milk production traits in HF is one example for genes which are not associated 
with milk production traits in DSN in GWAS (Korkuć et al., 2021), although DSN and HF are 
closely genetically related. Hence, we designed a customized 200K SNP chip for DSN 
including breed-specific variants (Neumann et al., 2021). We hypothesize that a denser breed-
specific SNP chip is helpful in GWAS to identify DSN-specific variants for a variety of traits. 
Wu et al. (2015) showed an increased power to detect significant associations with increasing 
marker density for mastitis in Danish Holsteins when comparing 50K, 777K and whole-genome 
sequence (WGS) data.  
The objective of this study was to compare three marker densities (50K, 200K and WGS) in 
GWAS for milk production, health indicator and calving traits in DSN. Furthermore, we 
compared the accuracies of genomic breeding values obtained using different SNP chip arrays. 
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Materials & Methods  
 
Phenotypes. We considered first-parity DSN cows from six herds. In total, 2,020 records were 
available for 305-day milk yield (M305), fat yield (F305) and protein yield (P305), 1,638 
records for test-day fat-to-protein ratio (FPR) and somatic cell score (SCS; log-transformed 
somatic cell count) as health indicators, and 2,606 records for calving ease (CE) and stillbirth 
incidence (SB). For FPR and SCS, we focused on the challenging early lactation period and 
included the first test-day record between 5 and 40 days in milk (DIM). The breed (DSN) 
percentage was larger than 90% for all cows according to an algorithm to clearly differentiate 
between DSN and HF (Jaeger et al., 2018).  
 
SNP chip design and imputation of genotypes. The customized DSN-augmented 200K SNP 
chip (Axiom® myDesign™ TG Array; hereafter referred as 200K chip) was designed as 
described by Neumann et al. (2021). Variants for the chip were selected from 20,587,181 
sequence variants (SVs) detected from WGS of 304 DSN cattle. The chip contains DSN unique 
variants, variants associated with important traits of interest in DSN (e.g., disease resistance, 
milk yield, fertility), variants with low, high or moderate impact on the transcripts, DSN 
informative variants from the 50K chip as well as 175,537 SNPs and 8,618 indels corresponding 
to 103,801 haplotype blocks in DSN. In total, 300 DSN cattle were genotyped with the novel 
designed 200K chip and provided a reference panel for the imputation of 1,797 DSN 50K chip 
genotypes into 200K genotypes. The filtered WGS data included 16,175,216 SVs of 304 DSN 
and served as a reference panel for the imputation of 1,797 DSN 200K genotypes to WGS level. 
The imputation and filtering of SVs were performed in BEAGLE (Browning et al., 2018). 
Quality control of the three marker densities (50K, 200K and WGS) was performed in PLINK 
(Purcell et al., 2007). Depending on the trait category, the final number of markers after filtering 
were ~37.000 SNPs for 50K, ~125.000 for 200K and ~11,600,000 SVs for WGS.  
 
Genome-wide associations and genetic parameter estimations. For the GWAS, we applied a 
single marker linear mixed model using the “leaving one chromosome out” option in GCTA 
(Yang et al., 2011) for all three marker densities (50K, 200K, WGS). The statistical model in 
matrix notation was: 
y = Xß + Zu + Ss + e           (1) 
where y = vector of observations for M305, F305, P305, FPR, SCS, CE and SB ; β = vector of 
fixed effects (herd-calving year-calving season and a linear regression on DIM and age at first 
calving for M305, F305 and P305; herd, test-day year-season and a linear regression on age at 
first calving for FPR; herd, test-day year-season, a linear regression on DIM and on fat 
percentage for SCS; herd-calving year-calving season and sex of calf for CE and SB); u = vector 
of polygenic effects with u ~ N (0, Gσ2

u), with G denoting the genomic relationship matrix 
(VanRaden, 2008), and σ2

u the polygenic variance; s = vector for marker effects; e = vector of 
random residuals; and X, Z, and S were incidence matrices for β, u, and s, respectively. We 
calculated an adjusted Bonferroni-corrected genome-wide significance threshold (pBonf) with 
p = 0.05/neff with neff = effective number of independent SNPs/SVs. In addition, we considered 
a suggestive significance threshold pSug with p = 1/neff. The -indep-pairwise option in PLINK 
(Purcell et al., 2007) was used to calculate neff by excluding one SV of a SV pair in LD r2>0.5 
in a window size of 5000 SVs, which was shifted in an interval of 500 SVs. SNP effect 
correlations were calculated genome-wide and chromosome-wide for each trait for all 
overlapping SNPs/SVs between the three marker densities. Furthermore, model (1) was applied 
to estimate genetic parameters for all traits with all three marker densities using restricted 
maximum likelihood (REML) with the --reml function in GCTA.  



Gene annotation. Potential candidate genes were queried and assigned to the associated 
SNPs/SVs using the current gene annotations from ENSEMBL (release 104). A gene was 
considered as a candidate gene if at least one SNP/SV with P<pSug was located in the 
respective gene and/or within 150 kb up- and downstream. Physiological functions of candidate 
genes were studied in the ENSEMBL and KEGG databases.  
  
Genomic breeding value estimation. Breeding values were estimated in two consecutive runs: 
i) 50K chip vs. 200K chip using 1,900 DSN and ii) 200K chip vs. 10 random selected 200K out 
of WGS data (random200K) using 1,980 DSN. Phenotypic data for M305 and F305 were pre-
corrected for fixed effects according to model (1) in R. Afterwards, we applied an animal model 
for genomic breeding value estimations using pre-corrected phenotypes (residuals) in 
BLUPF90 (Misztal et al., 2002). The statistical model was:  
y = μ + g + e  (2) 
where y = vector for residuals for M305 and F305; μ = overall mean; g = vector of additive 
genetic effects with ~ N (0, Gσ2

g), with G denoting the genomic relationship matrix (VanRaden, 
2008), and σ2

g the genomic variance; e = residual effects with ~ N (0, σ2
e), and σ2

e residual 
variance. For cross-validation, we divided the dataset in a validation set (20% of cows) and 
training set (80% of cows). We selected the cows randomly in a procedure with 10 replicates 
using replacements. The accuracy was calculated for each of the 10 replicates as the correlation 
between the direct GEBV and residuals. Afterwards, the mean accuracy was calculated based 
on the 10 replicates for M305 and F305 for 50K, 200K and random200K.     
 
Results  
The numbers of associated SNPs/SVs and genes for the three marker densities per trait are given 
in Table 1. For M305, F305 and P305, we identified 23 SNPs with 50K, 84 SNPs with 200K 
and 950 SVs with WGS with P<pBonf/pSug. For M305, 14.8% (4/27) of genes (KLF3, 
LIMCH1, NSUN7, RALGAPA2) overlapped for 50K and 200K. The genes with the largest 
number of SNPs/SVs located in a gene for M305 were MGST1 (BTA5), ADGRL3 (BTA6) and 
GNAL (BTA24), exclusively detected with 200K and WGS, but not with 50K (Figure 1).  
    

 
 
Figure 1. Manhattan-plots for 305-day lactation milk yield (M305); A) 50K Illumina 
BeadChip and B) novel designed DSN 200K SNP chip; markers above pBonf (red line) 
are highlighted in red; markers above pSug (blue line) are highlighted in blue; markers 
in a distance of 125kb up- and downstream of associated markers are highlighted, too.  
 
For SCS, we identified 62 SVs with WGS but no SNP reached pSug for the 50K and 200K 
chips. For the calving traits CE and SB, we identified 11 genes with 50K and 23 genes with 
200K. Among them, seven common genes were annotated with both SNP chips. Genome-wide 
and chromosome-wide SNP effect correlations between 50K and 200K were ≥ 0.99 (p ≤ 0.001) 
for all traits, and ranged from 0.62 to 0.81 (p ≤ 0.001) between WGS with 50K and 200K. The 
estimated heritabilities were quite similar for the three marker densities (Table 1). 



Table 1. Number of associated markers (SNPs/SVs) and identified genes (G) in the GWAS 
and heritabilities (h2) with standard error (SE) for the three marker densities   
 50K 200K WGS 
Trait No. SNPs/G h2  No. SNPs/G h2 No. SVs/G h2 
M305 11/11 0.40 (0.04) 64/20 0.39 (0.04) 724/48 0.41 (0.04) 
F305 8/10 0.33 (0.04) 11/8 0.33 (0.04) 115/20 0.34 (0.04) 
P305 4/6 0.34 (0.04) 9/7 0.33 (0.04) 111/11 0.35 (0.04) 
FPR 4/4 0.13 (0.04) 10/6 0.14 (0.04) 52/12 0.13 (0.04) 
SCS 0/0 0.11 (0.04) 0/0 0.12 (0.03) 62/2 0.13 (0.04) 
CE  0/0 0.03 (0.02) 1/1 0.03 (0.02) 5/2 0.04 (0.02) 
SB 1/1 0.04 (0.02) 2/1 0.05 (0.02) 10/8 0.05 (0.02) 

M305/F305/P305 = 305-day lactation yield for milk, fat and protein; FPR = fat-to-protein ratio; SCS = somatic 
cell score; CE = calving ease; SB = stillbirth 
 
For GEBV run (i), the mean accuracy was 0.46 for M305 and 0.36 for F305 with the 50K chip, 
and 0.47 and 0.37 with the 200K chip, respectively. When comparing the 200K chip with 
random200K in run (ii), mean accuracy was 0.46 for M305 and 0.34 for F305 with the 200K 
chip, and ranged from 0.446 to 0.450 for M305 and from 0.320 to 0.336 for the 10 random200K.      
 
Discussion 
Similar heritabilities and GEBV accuracies for different marker densities and traits showed a 
limited advantage when using the customized 200K chip compared to the 50K chip in genetic 
evaluations for the endangered DSN breed. Similarly, Erbe et al. (2012) indicated a small 
increase in genomic prediction accuracies of 0.01 in HF and 0.03 in Jerseys when using imputed 
high-density SNP panels compared to the Illumina 50K. However, since DSN and HF are 
closely genetically related, a breed-specific SNP chip might be more advantageous for small 
breeds that are distantly related with the large commercial cattle populations HF, Simmental 
and Brown Swiss. In agreement with the results by Wu et al. (2015), the power to detect 
candidate genes was improved when using the specifically designed 200K chip and WGS data 
compared to 50K. This might be due to stronger linkage disequilibrium between markers and 
quantitative trait nucleotides (QTN) for higher marker densities. SNP effect correlations were 
close to one between 50K and 200K, but moderate to high between WGS with both SNP chips. 
Hence, WGS is suitable to detect breed-specific variants affecting traits of interest in small-
sized endangered cattle breeds, which can be integrated into genomic prediction models to 
improve prediction accuracies.        
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