Precision agriculture ’15
Precision agriculture ’15

edited by:
John V. Stafford

Papers presented at the 10th European Conference on Precision Agriculture
Volcani Center, Israel
12-16 July 2015

Wageningen Academic Publishers
The local organizing committee

Chairs

Victor Alchanatis
Yafit Cohen

Members

Nurit Agam
Avital Bechar
David Jacques Bonfil
Amir Degani
Yael Edan
Hanan Eizenberg
Ilan Halachmi
Amots Hetzroni
Arnon Karnieli
Raphael Linker
Moshe Meron
Shay Meytal
Zeev Schmilovitch
Scientific committee

Adamchuk, Viacheslav
Agüera, Juan
Barreiro, Pilar
Basso, Bruno
Bergeijk, Jaap van
Bramley, Rob
Bronson, Kevin
Cammarano, Davide
Castrignano, Anna Maria
Christensen, Svend
Chrysikos, Theofilos
Clay, David
Clevers, Jan
Cohen, Yafit
Cook, Simon
Cugnasca, Carlos
Dille, Anita
Dillon, Carl
Escolà, Àlex
Ferguson, Richard
Fountas, Spyros
Fulton, John
Gebbers, Robin
Gemtos, Fanis
Gerhards, Roland
Germain, Christian
Gilbertsson, Mikael
Griepentrog, Hans
Hedley, Carolyn
Heege, Herman
Hunt, Raymond
Jaggard, Keith
Kerry, Ruth
Kersebaum, Christian
Khosla, Raj
Kitchen, Newell
Koundouras, Stefanos
Lascano, Robert
Lebeau, Frederic
Lee, Matthew
Lee, Won Suk 'Daniel'
Long, Dan
Longchamps, Louis
López Granados, Francisca
Lowenberg-Deboer, Jess
Martínez-Casasnovas, José A.
Meirvenne, Marc van
Meron, Moshe
Miao, Yuxin
Molin, Jose
Moshou, Dimitrios
Nordmeyer, Henning
Oberti, Roberto
Oerke, Erich-Christian
Oliver, Margaret
Oppelt, Natascha
O'Shaughnessy, Susan
Pajares, Gonzalo
Panneton, Bernard
Perez-Ruiz, Manuel
Plant, Richard
Rabatel, Giles
Ribeiro, Ángela
Rosell-Polo, Joan R.
Roudier, Pierre
Rovira-Más, Francisco
Santereban, Gonzaga
Schepers, Jim
Schueller, John
Schumann, Arnold
Shaver, Tim
Smart, David
Söderström, Mats
Solanelles, Francesc
Spoor, Gordon
Stamatiadis, Stamatis
Steven, Michael
Stombaugh, Tim
Stone, Marvin
Sudduth, Ken
Tartachnyk, Iryna
Taylor, James
Tisseyre, Bruno
Tremblay, Nicholas
Upadhaya, Shrini
Vincini, Massimo
Vougioukas, Stavros
Walsh, Kerry
Wendroth, Ole
Westfall, Dwayne
Whelan, Brett
Wiles, Lori
Willers, Jeffrey
Wong, Mike
Yang, Chenghai
Yule, lan
Zhang, Chunhua
Zhao, Chunziang
Zude, Manuela
Zarco-Tejada, Pablo
Table of contents

Editorial
John V. Stafford
15

Section 1 – Crop and soil proximal sensing
17

3D soil moisture sensing and imaging
I. Gravalos, A. Georgiadis, D. Kateris, O. Haralampous, T. Gialamas, P. Xyradakis, Z. Tsiropoulos, E. Bompolas and E. Manolakoudis
19

Potential of using portable x-ray fluorescence spectroscopy for rapid soil analysis
R. Gebbers and M. Schirrmann
27

Long-term monitoring of soil organic carbon patterns in a perennial pastureland
J. Serrano, S. Shahidian and J. Marques da Silva
35

Proximal nitrogen sensing by off-nadir and nadir measurements in winter wheat canopy
M.L. Gnyp, M. Panitzki, and S. Reusch
43

Operational characteristics of commercial crop canopy sensors for nitrogen application in maize
K.A. Sudduth, S.T. Drummond and N.R. Kitchen
51

Characterization of winter wheat nitrogen status with vegetation indices under different availability of sulphur
J. Groszyk, S. Samborski, D. Gozdowski, M. Stępień, E. Leszczyńska and J. Rozbicki
59

Precision nitrogen management strategy for winter wheat in the North China Plain based on an active canopy sensor
Q. Cao, Y. Miao, F. Li and D. Lu
67

Understanding hand-held crop sensor measurements and winter wheat yield mapping
L. Quebrajo, M. Pérez-Ruiz, J. Agüera and A. Rodríguez-Lizana
75

Combining active optical sensors, infrared thermometers and ultrasonic height sensors for proximal sensing in irrigated cotton
83

Improving estimation of rice yield potential using active canopy sensor Crop Circle ACS 430 in Northeast China
J. Lu, Y. Miao, J. Shen, Q. Cao, S. Huang, H. Wang, H. Wu, S. Hu and X. Hu
91

Using depth cameras for biomass estimation – a multi-angle approach
D. Andújar, A. Escolà, J.R. Rosell-Polo, A. Ribeiro, C. San Martín, C. Fernández-Quintanilla and J. Dorado
97

Use of crop height and optical sensor readings to predict mid-season cotton biomass
R.G. Trevisan, N. de S.V. Junior, G. Portz, M.T. Eitelwein and J.P. Molin
103
NDVI measurements as a predictor of *Miscanthus × giganteus* biomass

E.M. Pena-Yewtukhiw, J.H. Grove, C. Griffin and K. Fetter

Section 2 – UAV, aerial and satellite sensing

Vegetation indices from unmanned aerial vehicles – mounted sensors to monitor the development of maize (*Zea mays* L.) under different N rates

J.A. Martínez-Casasnovas, M. Ariza-Sentis, A. Maresma, E. Martínez and J. Lloveras

Estimation of above-ground dry matter and nitrogen uptake in catch crops using images acquired from an octocopter

A.K. Mortensen, R. Gislum, R. Larsen, R.N. Jørgensen

A fully automatized processing chain for high-resolution multispectral image acquisition of crop parcels by UAV

G. Rabatel and S. Labbé

Using an unmanned aerial vehicle to evaluate nitrogen variability and distance effect with an active crop canopy sensor

B. Krienke, R. Ferguson and B. Maharjan

Field trial design using semi-automated conventional machinery and aerial drone imaging for outlier identification

R.N. Jørgensen, M.B. Brandt, T. Schmidt, M.S. Laursen, R. Larsen, M. Nørremark, H.S. Midtiby and P. Christiansen

Operational unmanned aerial vehicle assisted post-emergence herbicide patch spraying in maize: a field study

F. Pelosi, F. Castaldi and R. Casa

A fleet of aerial and ground robots: a scalable approach for autonomous site-specific herbicide application

Evaluating soil available nitrogen status with remote sensing

J.H. Meng, X.Z. You and Z.Q. Cheng

Remote estimation of gross primary productivity in maize and soybean

A.A. Gitelson, Y. Peng, D.C. Rundquist, A. Suyeker and S.B. Verma

High resolution remote and proximal sensing to assess low and high yield areas in a wheat field

Yield prediction for precision territorial management in maize using spectral data

S.S. Kunapuli, V. Rueda-Ayala, G. Benavidez-Gutiérrez, A. Córdova-Cruzatty, A. Cabrera, C. Fernández and J. Maiguashca
Section 3 – Spatial variability and mapping

Precision agriculture in watermelons
S. Fountas, E. Anastasiou, G. Xanthopoulos, G. Lambrinos, E. Manolopoulou, S. Apostolidou, D. Lentzou, Z. Tsiropoulos and A. Balafoutis

Soil management determines sampling density/spatial dependence of dynamic soil properties
J.H. Grove, and E.M. Pena-Yewtuhiw

Yield mapping methods for manually harvested crops
A.F. Colaço, R.G. Trevisan, F.H.S. Karp, J.P. Molin

A multivariate spatial clustering method for partitioning tree-based orchard data into homogenous zones
A. Peeters, M. Zude, J. Käthner, M. Ünlü, R. Kanber, A. Hetzroni, R. Gebbers and A. Ben-Gal

An approach to delineate management zones in a durum wheat field: validation using remote sensing and yield mapping
G. Buttafuoco, A. Castrignanò, G. Cucci, M. Rinaldi and S. Ruggieri

Improving N use efficiency by integrating soil and crop properties for variable rate N management
L. Longchamps and R. Khosla

Section 4 – Machinery robotics and PA technologies

Effective segmentation of green vegetation for resource-constrained real-time applications
S. Moorthy, B. Boigelot and B.C.N. Mercatoris

Autonomous field navigation for data acquisition of wireless sensor networks
D. Reiser, D.S. Paraforos, M.T. Khan and H.W. Griepepentog

Fused inertial measurement unit and real time kinematic-global navigation satellite system data assessment based on robotic total station information for in-field dynamic positioning
D.S. Paraforos, H.W. Griepepentog, J. Geipel and T. Stehle

Low-cost robotics for horticulture: a case study on automated sugar pea harvesting
M.F. Stoelen, K. Kusnierenk, V.F. Tejada, N. Heiberg, C. Balaguer and A. Korsaeth

Advanced sensor platform for human detection and protection in autonomous farming
P. Christiansen, M.K. Hansen, K.A. Steen, H. Karstof and R.N. Jørgensen

Detection of plant and greenhouse features using sonar sensors
R. Finkelshtain, Y. Yovel, G. Kosa and A. Bechar

An approach to a laser weeding system for elimination of in-row weeds
R. Shah and W.S. Lee
Task characterization and classification for robotic manipulator optimal design in precision agriculture
V. Bloch, A. Degani and A. Bechar 313

Mapping olive-tree geometric features from 3D models generated with an unmanned aerial vehicle
J. Torres-Sánchez, F. López-Granados and J.M. Peña 321

Orchard tree digitization for structural-geometrical modeling
R. Arikapudi, S. Vougioukas and T. Saracoglu 329

A mobile terrestrial laser scanner for tree crops: point cloud generation, information extraction and validation in an intensive olive orchard

Wireless sensor and control network based on open-source hardware and software
R. Coates, M. Delwiche and A. Broad 345

Importance of measuring tillage implement forces for reduced fuel consumption and increased efficiency without affecting tillage depth

Slurry tanker retrofitting with variable rate dosing system: a case study
M. Brambilla, A. Calcante, R. Oberti and C. Bisaglia 361

Comparison of different spread pattern determination techniques
S. Cool, J. Vangeyte, J. van Damme, B. Sonck, J.G. Pieters, T. van de Gucht and K.C. Mertens 369

Measuring the dynamic mass flow from a centrifugal fertilizer spreader

Section 5 – Management, data analyses and DSS 383

PALMScot: a cotton landscape model for a precision agriculture scale
R.J. Lascano 385

Combining crop sensing and simulation modeling to assess within-field corn nitrogen stress
V. Zanella, B.V. Ortiz, K. Thorp, F. Morari, G. Mosca and G. Hoogenboom 391

Predicting pre-harvest aflatoxin corn contamination risk with a drought index
D. Damianidis, B.V. Ortiz, G. Windham, B. Scully and P. Woli 399

The use of computer simulation models in precision nutrient management
F. Plauborg, K. Manevski, Z. Zhou and M.N. Andersen 407

How to define the size of a sampling unit to map high resolution spatial data?
B. Tisseyre, V. Geraudie and N. Saurin 413

RemoteAgri: processing online big earth observation data for precision agriculture
K. Karantzalos, A. Karmas and A. Tzotsos 421
Farm management information system for fruit orchards
Z. Tsiropoulos and S. Fountas

Some considerations about the development and implementation process of a new agricultural decision support system for site-specific fertilization
C. Lundström, J. Lindblom, M. Ljung and A. Jonsson

Section 6 – Advances in precision fruticulture/viticulture/oliviculture and horticulture in general

‘On-the-go’ multispectral imaging system to characterize the development of vineyard foliage
M.A. Bourgeon, J.N. Paoli, S. Villette, S. Debuisson, M. Morlet, G. Jones and C. Gée

Development of an artificial vision progressive local method for auto tracking of vine rows
B. Benet, R. Lenain and V. Rousseau

NDVI-based vigour maps production using automatic detection of vine rows in ultra-high resolution aerial images

Temporal stability of within-field variability for total soluble solids in four irrigated grapevines cultivars growing under semi-arid conditions
N. Verdugo-Vásquez, C. Acevedo-Opazo, H. Valdés-Gómez, B. Ingram, I. García de Cortázar and B. Tisseyre

Within-vineyard zone delineation in an area with diversity of training systems and plant spacing using parameters of vegetative growth and crop load
I. Urretavizcaya, C. Miranda, J.B. Royo and L.G. Santesteban

Integration of operational constraints to optimize differential harvest in viticulture
N. Briot, C. Bessiere, B. Tisseyre and P. Vismara

Spatial variability of soil phosphorus, potassium and pH: evaluation of the potential for improving vineyard fertilizer management
J. Serrano, J. Marques da Silva, S. Shahidian, L. Silva, A. Sousa and F. Baptista

Numerical simulation of soil water dynamics as a decision support system for irrigation management in drip-irrigated hedgerow olive orchards
G. Egea, A. Díaz-Espejo and J.E. Fernández

Characterization of salinity-induced effects in olive trees based on thermal imagery

Automated detection of malfunctions in drip-irrigation systems using thermal remote sensing in vineyards and olive orchards
A. Dag, Y. Cohen, V. Alchanatis, I. Zipori, M. Sprinstin, A. Cohen, T. Maaravi and A. Naor

Embedded stem water potential sensor
M. Meron, S.Y. Goldberg, A. Solomon-Halgoa and G. Ramon

Precision agriculture ‘15
Estimation of apple orchard yield using night time imaging
R. Linker, E. Kelman and O. Cohen

Sampling stratification using aerial imagery to estimate fruit load and hail damage in nectarine trees
C. Miranda, I. Urretavizcaya, L.G. Santesteban and J.B. Royo

Computer vision system for individual fruit inspection during harvesting on mobile platforms
S. Cubero, S. Alegre, N. Aleixos and J. Blasco

Use of NDVI to predict yield variability in a commercial apple orchard
V. Liakos, A. Tagarakis, S. Fountas, G.D. Nanos, Z. Tsiropoulos and T. Gemtos

Section 7 – Precision crop protection

Using sensors to assess herbicide stress in sugar beet
J. Roeb, G.G. Peteinatos and R. Gerhards

RoboWeedSupport: weed recognition for reduction of herbicide consumption
M. Dyrmann and R.N. Jørgensen

Precision harrowing with a flexible tine harrow and an ultrasonic sensor
G.G. Peteinatos, V. Rueda-Ayala, R. Gerhards and D. Andujar

Weed detection by aerial imaging: simulation of the impact of soil, crop and weed spectral mixing
M. Louargant, S. Villette, G. Jones, N. Vigneau, J.N. Paoliand C. Gée

An image-based decision support methodology for weed management
C.A. Franco, S.M. Pedersen, H. Papaharalampos and J.E. Ørum

Variables associated with the spread of bacterial canker and wilt caused by Clavibacter michiganensis subsp. michiganensis in tomato greenhouses
L. Blank, Y. Cohen, M. Borenstein, R. Shulhani, M. Lofthouse, M. Sofer and D. Shtienberg

Proximal sensing of barley resistance to powdery mildew

Crop health condition monitoring based on the identification of biotic and abiotic stresses by using hierarchical self-organizing classifiers
D. Moshou, X.E. Pantazi, R. Oberti, C. Bravo, J. West, H. Ramon and A.M. Mouazen

A robotic monitoring system for diseases of pepper in greenhouse
N. Schor, S. Berman, A. Dombrovsky, Y. Elad, T. Ignat and A. Bechar

An automatic system for Mediterranean fruit fly monitoring
E. Goldshtein, Y. Cohen, D. Timar, L. Rosenfeld, Y. Grinshpon, Y. Gazit, A. Hoffman, A. Mizrach and V. Alchanatis
Detection of red palm weevil infected trees using thermal imaging

O. Golomb, V. Alchanatis, Y. Cohen, N. Levin, Y. Cohen, V. Soroker

Site-specific detection and treatment of Medfly in orchards

Early detection of two-spotted spider mite damage to pepper leaves by spectral means

I. Herrmann, M. Berenstein, T. Paz-Kagan, A. Sade and A. Karnieli

Section 8 – Advances in precision irrigation

Remote sensing for crop water stress detection in greenhouses

T. Bartzanas, N. Katsoulas, A. Elvanidi, K.P. Ferentinos and C. Kittas

A decision support tool for managing precision irrigation with center pivots

V. Liakos, G. Vellidis, M. Tucker, C. Lowrance and X. Liang

Is there variability in soil water content of leveled fields?

L. Longchamps, R. Khosla and R. Reich

A cost-effective canopy temperature measurement system for precision agriculture decision support – first-year status update

J. Martínez, M. Pérez-Ruiz, G. Egea, L. Pérez and J. Agüera

A smartphone app for precision irrigation scheduling in cotton

Irrigation control in cotton fields using ground thermal imaging

O. Rosenberg, Y. Cohen, V. Alchanatis, Y. Saranga, A. Bosak and S. Mey-Tal

Optimal irrigation of cotton in northern Greece using AquaCrop: a multi-year simulation study

R. Linker, G. Sylaios and I. Tsakmakis

Section 9 – Economics, practical adoption and emerging issues

Adoption and perspectives of auto-guidance in northern Europe

S.M. Pedersen, K.M. Lind and S. Fountas

Promoting precision farming in southeast Europe: examples from site-specific management clusters in north Greece

Keyword index

Authors index
Editorial

Precision Agriculture can now be considered ‘mainstream’, aspects of it being practised across a very wide range of crops and over many countries. Continuing research in the many associated disciplines is still very necessary and the increasing number of papers being submitted to ‘Precision Agriculture’ is clear evidence of the attention being given to the concept by the research community. Agriculture faces increasing challenges in areas such as food security, environmental protection, water availability and resistance to agrochemicals. Precision agriculture can certainly be part of the solution to these challenges. So this 10th conference is again timely and the papers published in these Proceedings form an important permanent record. PA research is increasing the world over and a good cross-section of results from that research is presented here. The Volcani Centre in Israel will, I am sure, be an excellent location for the conference but, long after it is over, these Proceedings will be pulled down from the bookshelf to reference papers – and also bring back happy memories of a successful conference.

The conferences have gained a good reputation because of the standard of the Proceedings. A strict approach has been taken to paper acceptance. Each draft paper has been assessed by two members of the Scientific Committee and by myself as Editor. Revised papers have been subjected to rigorous editorial processing so that the papers presented here approach the quality of papers in refereed journals. I would like to record my grateful appreciation to the members of the Scientific Committee who, amidst the busy schedule of research careers, have freely given their time and professional judgement to assess the conference papers.

John V. Stafford
Editor
Ampthill, UK
john.stafford@silsoe-solutions.co.uk
April 2015