Cover Image

Handbook of eggs in human function


Human Health Handbooks, Volume 9

Published: 

eISBN: 978-90-8686-804-9 | ISBN: 978-90-8686-254-2

Book Type: Edited Collection
Allen, E., Gray, P., Kollias-Pearson, A., Oag, E., Pratt, K., Henderson, J. and Gray, S.R., 2014. The effect of short-duration sprint interval exercise on plasma postprandial triacylglycerol levels in young men. Journal of Sports Sciences 32: 911-916.
CrossrefGoogle Scholar
American Dietetic Association, Dietitians of Canada, American College of Sports Medicine, Rodriguez, N.R., Di Marco, N.M. and Langley, S., 2009. American College of Sports Medicine position stand. Nutrition and athletic performance. Medicine and Science in Sports and Exercise 41: 709-731.
CrossrefGoogle Scholar
Andersen, C.J., Blesso, C.N., Lee, J., Barona, J., Shah, D., Thomas, M.J. and Fernandez, M.L., 2013. Egg consumption modulates HDL lipid composition and increases the cholesterol-accepting capacity of serum in metabolic syndrome. Lipids 48: 557-567.
CrossrefGoogle Scholar
American Heart Association, 2014. Moderate to vigorous – what is your level of intensity? American Heart Association, Dallas, TX, USA. Available at: http://www.heart.org/HEARTORG/GettingHealthy/ PhysicalActivity/FitnessBasics/Moderate-to-Vigorous---What-is-your-level-of-intensity_UCM_463775_ Article.jsp.
Google Scholar
Bastien, M., Poirier, P., Lemieux, I. and Després, J.P., 2014. Overview of epidemiology and contribution of obesity to cardiovascular disease. Progress in Cardiovascular Diseases 56: 369-381.
CrossrefGoogle Scholar
Bennett, B.J., De Aguiar Vallim, T.Q., Wang, Z., Shih, D.M., Meng, Y., Gregory, J., Allayee, H., Lee, R., Graham, M., Crooke, R., Edwards, P.A., Hazen, S.L. and Lusis, A.J., 2013. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metabolism 17: 49-60.
CrossrefGoogle Scholar
Berger, J. and Moller, D.E., 2002. The mechanisms of action of PPARs. Annual Review of Medicine 53: 409-435.
CrossrefGoogle Scholar
Beynen, A.C. and Katan, M.B., 1985. Effect of egg yolk feeding on the concentration and composition of serum lipoproteins in man. Atherosclerosis 54: 157-166.
CrossrefGoogle Scholar
Blesso, C.N., Andersen, C.J., Barona, J., Volek, J.S. and Fernandez, M.L., 2013. Whole egg consumption improves lipoprotein profiles and insulin sensitivity to a greater extent than yolk-free egg substitute in individuals with metabolic syndrome. Metabolism 62: 400-410.
CrossrefGoogle Scholar
Borja, M.S., Zhao, L., Hammerson, B., Tang, C., Yang, R., Carson, N., Fernando, G., Liu, X., Budamagunta, M.S., Genest, J., Shearer, G.C., Duclos, F. and Oda, M.N., 2013. HDL-apoA-I exchange: rapid detection and association with atherosclerosis. PLoS ONE 8: e71541.
CrossrefGoogle Scholar
Carleton, R.A., Dwyer, J., Finberg, L., Flora, J., Goodman, D.S., Grundy, S.M., Havas, S., Hunter, G.T., Kritchevsky, D. and Lauer, R.M., 1991. Report of the expert panel on population strategies for blood cholesterol reduction. A statement from the National Cholesterol Education Program, National Heart, Lung, and Blood Institute, National Institutes of Health. Circulation 83: 2154-2232.
CrossrefGoogle Scholar
Caro, J., Navarro, I., Romero, P., Lorente, R.I., Priego, M.A., Martínez-Hervás, S., Real, J.T. and Ascaso, J.F., 2013. Metabolic effects of regular physical exercise in healthy population. Endocrinología y Nutrición (English Edition) 60: 167-172.
CrossrefGoogle Scholar
Chorell, E., Moritz, T., Branth, S., Antti, H. and Svensson, M.B., 2009. Predictive metabolomics evaluation of nutrition-modulated metabolic stress responses in human blood serum during the early recovery phase of strenuous physical exercise. Journal of Proteome Research 8: 2966-2977.
CrossrefGoogle Scholar
Chung, S.W. and Chan, B.T., 2009. Trimethylamine oxide, dimethylamine, trimethylamine and formaldehyde levels in main traded fish species in Hong Kong. Food Additives & Contaminants Part B, Surveillance 2: 44-51.
CrossrefGoogle Scholar
Conlay, L.A., Sabounjian, L.A. and Wurtman, R.J., 1992. Exercise and neuromodulators: choline and acetylcholine in marathon runners. International Journal of Sports Medicine 13(1): S141-S142.
CrossrefGoogle Scholar
Dankner, R., Chetrit, A., Ken Dror, G. and Sela, B.A., 2007. Physical activity is inversely associated with total homocysteine levels, independent of C677T MTHFR genotype and plasma B vitamins. AGE 29: 219-227.
CrossrefGoogle Scholar
Djoussé, L. and Gaziano, J.M., 2009. Dietary cholesterol and coronary artery disease: a systematic review. Current Atherosclerosis Reports 11: 418-422.
CrossrefGoogle Scholar
Durstine, P.J.L., Grandjean, P.W., Davis, P.G., Ferguson, M.A., Alderson, N.L. and DuBose, K.D., 2001. Blood lipid and lipoprotein adaptations to exercise. Sports Medicine 31: 1033-1062.
CrossrefGoogle Scholar
Ferguson, M.A., Alderson, N.L., Trost, S.G., Essig, D.A., Burke, J.R. and Durstine, J.L., 1998. Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. Journal of Applied Physiology 85: 1169-1174.
CrossrefGoogle Scholar
Fernandez, M.L. and Calle, M., 2010. Revisiting dietary cholesterol recommendations: does the evidence support a limit of 300 mg/d? Current Atherosclerosis Reports 12: 377-383.
CrossrefGoogle Scholar
Ferrier, D., 2013. Biochemistry (Lippincott Illustrated Reviews Series). LWW, Philadelphia, PA, USA, 560 pp.
Google Scholar
Friedewald, W.T., Levy, R.I. and Fredrickson, D.S., 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry 18: 499-502.
Google Scholar
Frisch, F. and Sumida, K.D., 1999. Strength training does not alter the effects of testosterone propionate injections on high-density lipoprotein cholesterol concentrations. Metabolism: Clinical and Experimental 48: 1493-1497.
CrossrefGoogle Scholar
Frost, P.H. and Havel, R.J., 1998. Rationale for use of non-high-density lipoprotein cholesterol rather than low-density lipoprotein cholesterol as a tool for lipoprotein cholesterol screening and assessment of risk and therapy. American Journal of Cardiology 81: 26B-31B.
CrossrefGoogle Scholar
Ghahramanloo, E., Midgley, A.W. and Bentley, D.J., 2009. The Effect of concurrent training on blood lipid profile and anthropometrical characteristics of previously untrained men. Journal of Physical Activity & Health 6: 760-766.
CrossrefGoogle Scholar
Goldberg, L., Elliot, D.L., Schutz, R.W. and Kloster, F.E., 1984. Changes in lipid and lipoprotein levels after weight training. Journal of the American Medical Association 252: 504-506.
CrossrefGoogle Scholar
Greene, N.P., Fluckey, J.D., Lambert, B.S., Greene, E.S., Riechman, S.E. and Crouse, S.F., 2012. Regulators of blood lipids and lipoproteins? PPARδ and AMPK, induced by exercise, are correlated with lipids and lipoproteins in overweight/obese men and women. American Journal of Physiology–Endocrinology and metabolism 303: E1212-E1221.
CrossrefGoogle Scholar
Gurr, M.I., Harwood, J.L. and Frayn, K.N., 2002. Lipid biochemistry: an introduction. Blackwell Science Ltd., Oxford, UK.
Google Scholar
Hamblin, M., Chang, L., Fan, Y., Zhang, J. and Chen, Y.E., 2009. PPARs and the cardiovascular system. Antioxidants & Redox Signaling 11: 1415-1452.
CrossrefGoogle Scholar
Harrison, M., Moyna, N.M., Zderic, T.W., O’Gorman, D.J., McCaffrey, N., Carson, B.P. and Hamilton, M.T., 2012. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise. Lipids in Health and Disease 11.
Google Scholar
Herrmann, M., Schorr, H., Obeid, R., Scharhag, J., Urhausen, A., Kindermann, W. and Herrmann, W., 2003. Homocysteine increases during endurance exercise. Clinical Chemistry and Laboratory Medicine 41: 1518-1524.
Google Scholar
Homocysteine Studies, C., 2002. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. Journal of the American Medical Association 288: 2015-2022.
CrossrefGoogle Scholar
Horowitz, J.F. and Klein, S., 2000. Lipid metabolism during endurance exercise. American Journal of Clinical Nutrition 72: 558s-563s.
CrossrefGoogle Scholar
Hu, F.B., Stampfer, M.J., Rimm, E.B., Manson, J.E., Ascherio, A., Colditz, G.A., Rosner, B.A., Spiegelman, D., Speizer, F.E., Sacks, F.M., Hennekens, C.H. and Willett, W.C., 1999. A prospective study of egg consumption and risk of cardiovascular disease in men and women. Journal of the American Medical Association 281: 1387-1394.
CrossrefGoogle Scholar
Hubner, K., Schwager, T., Winkler, K., Reich, J.-G. and Holzhutter, H.G., 2008. Computational lipidology: predicting lipoprotein density profiles in human blood plasma. PLoS Computational Biology 4.
Google Scholar
Hurley, B.F., Hagberg, J.M., Goldberg, A.P., Seals, D.R., Ehsani, A.A., Brennan, R.E. and Holloszy, J.O., 1988. Resistive training can reduce coronary risk factors without altering VO2 max or percent body fat. Medicine and Science in Sports and Exercise 20: 150-154.
CrossrefGoogle Scholar
Iglay, H.B., Apolzan, J.W., Gerrard, D.E., Eash, J.K., Anderson, J.C. and Campbell, W.W., 2009. Moderately increased protein intake predominately from egg sources does not influence whole body, regional, or muscle composition responses to resistance training in older people. Journal of Nutrition, Health & Aging 13: 108-114.
CrossrefGoogle Scholar
Institute of Medicine Food and Nutrition Board, 1998. Dietary reference intakes: a risk assessment model for establishing upper intake levels for nutrients. National Academies Press, Washington, DC, USA.
Google Scholar
Joy, J.M., Gundermann, D.M., Lowery, R.P., Jager, R., McCleary, S.A., Purpura, M., Roberts, M.D., Wilson, S.M., Hornberger, T.A. and Wilson, J.M., 2014. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. Nutrition and Metabolism 11: 29.
CrossrefGoogle Scholar
Jug, B., Papazian, J., Lee, R. and Budoff, M.J., 2013. Association of lipoprotein subfractions and coronary artery calcium in patients at intermediate cardiovascular risk. American Journal of Cardiology 111: 213-218.
CrossrefGoogle Scholar
Kelley, G.A. and Kelley, K.S., 2009. Impact of progressive resistance training on lipids and lipoproteins in adults: 2710. Medicine & Science in Sports & Exercise 41: 435-436.
CrossrefGoogle Scholar
Kontush, A., Lhomme, M. and Chapman, M.J., 2013. Unraveling the complexities of the HDL lipidome. Journal of Lipid Research 54: 2950-2963.
CrossrefGoogle Scholar
Kontush, A., Therond, P., Zerrad, A., Couturier, M., Negre-Salvayre, A., De Souza, J.A., Chantepie, S. and Chapman, M.J., 2007. Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. Arteriosclerosis, Thrombosis, and Vascular Biology 27: 1843-1849.
CrossrefGoogle Scholar
Krämer, D.K., Al-Khalili, L., Guigas, B., Leng, Y., Garcia-Roves, P.M. and Krook, A., 2007. Role of AMP Kinase and PPARδ in the regulation of lipid and glucose metabolism in human skeletal muscle. Journal of Biological Chemistry 282: 19313-19320.
CrossrefGoogle Scholar
Kraus, W.E., Houmard, J.A., Duscha, B.D., Knetzger, K.J., Wharton, M.B., McCartney, J.S., Bales, C.W., Henes, S., Samsa, G.P., Otvos, J.D., Kulkarni, K.R. and Slentz, C.A., 2002. Effects of the amount and intensity of exercise on plasma lipoproteins. New England Journal of Medicine 347: 1483-1492.
CrossrefGoogle Scholar
Krauss, R.M., Blanche, P.J., Rawlings, R.S., Fernstrom, H.S. and Williams, P.T., 2006. Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia. American Journal of Clinical Nutrition 83: 1025-1031.
CrossrefGoogle Scholar
Lecerf, J.M. and de Lorgeril, M., 2011. Dietary cholesterol: from physiology to cardiovascular risk. British Journal of Nutrition 106: 6-14.
CrossrefGoogle Scholar
Leddy, J., Horvath, P., Rowland, J. and Pendergast, D., 1997. Effect of a high or a low fat diet on cardiovascular risk factors in male and female runners. Medicine & Science in Sports & Exercise 29: 17-25.
CrossrefGoogle Scholar
Lee, O., Moon, J. and Chung, Y., 2003. The relationship between serum selenium levels and lipid profiles in adult women. Journal of Nutritional Science and Vitaminology 49: 397-404.
CrossrefGoogle Scholar
Lehti, M., Donelan, E., Abplanalp, W., Al-Massadi, O., Habegger, K.M., Weber, J., Ress, C., Mansfeld, J., Somvanshi, S., Trivedi, C., Keuper, M., Ograjsek, T., Striese, C., Cucuruz, S., Pfluger, P.T., Krishna, R., Gordon, S.M., Silva, R.A., Luquet, S., Castel, J., Martinez, S., D’Alessio, D., Davidson, W.S. and Hofmann, S.M., 2013. High-density lipoprotein maintains skeletal muscle function by modulating cellular respiration in mice. Circulation 128: 2364-2371.
CrossrefGoogle Scholar
Lemieux, I., Lamarche, B., Couillard, C., Pascot, A., Cantin, B., Bergeron, J., Dagenais, G.R. and Després, J.P., 2001. Total cholesterol/HDL cholesterol ratio vs. LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: the Quebec cardiovascular study. Archives of Internal Medicine 161: 2685-2692.
CrossrefGoogle Scholar
Leon, A.S., Gaskill, S.E., Rice, T., Bergeron, J., Gagnon, J., Rao, D.C., Skinner, J.S., Wilmore, J.H. and Bouchard, C., 2002. Variability in the response of HDL cholesterol to exercise training in the HERITAGE family study. International Journal of Sports Medicine 23: 1-9.
CrossrefGoogle Scholar
Li, D., Wang, D., Wang, Y., Ling, W., Feng, X. and Xia, M., 2010. Adenosine monophosphate-activated protein kinase induces cholesterol efflux from macrophage-derived foam cells and alleviates atherosclerosis in apolipoprotein E-deficient mice. Journal of Biological Chemistry 285: 33499-33509.
CrossrefGoogle Scholar
McNiven, E.M., German, J.B. and Slupsky, C.M., 2011. Analytical metabolomics: nutritional opportunities for personalized health. Journal of Nutritional Biochemistry 22: 995-1002.
CrossrefGoogle Scholar
Ming-Lang, T., Chien-Chang, H., Shih-Chang, C., Yi-Chia, H., Cheng-Hsiu, L. and Yung-Po, L., 2013. A simple method for increasing levels of high-density lipoprotein cholesterol: a pilot study of combination aerobic- and resistance-exercise training. International Journal of Sport Nutrition and Exercise Metabolism 23: 271-281.
CrossrefGoogle Scholar
Morencos, E., Romero, B., Peinado, A.B., González-Gross, M., Fernández, C., Gómez-Candela, C., Benito, P.J. and PRONAF study group, 2012. Effects of dietary restriction combined with different exercise programs or physical activity recommendations on blood lipids in overweight adults. Nutricion Hospitalaria 27: 1916-1927.
Google Scholar
Musliner, T.A. and Krauss, R.M., 1988. Lipoprotein subspecies and risk of coronary disease. Clinical Chemistry 34: B78-B83.
Google Scholar
Mutungi, G., Ratliff, J., Puglisi, M., Torres-Gonzalez, M., Vaishnav, U., Leite, J.O., Quann, E., Volek, J.S. and Fernandez, M.L., 2008. Dietary cholesterol from eggs increases plasma HDL cholesterol in overweight men consuming a carbohydrate-restricted diet. Journal of Nutrition 138: 272-276.
CrossrefGoogle Scholar
Nakajima, K., Nakano, T., Tokita, Y., Nagamine, T., Inazu, A., Kobayashi, J., Mabuchi, H., Stanhope, K.L., Havel, P.J., Okazaki, M., Ai, M. and Tanaka, A., 2011. Postprandial lipoprotein metabolism: VLDL vs. chylomicrons. Clinica Chimica Acta 412: 1306-1318.
CrossrefGoogle Scholar
National Cancer Institute, 2014. Monitoring risk & health behaviors. National Cancer Institute, Bethesda, MD, USA.
Google Scholar
National Heart, Lung and Blood Institute (NHLBI), 2002. Third report of the expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). NHLBI, Bethesda, MD, USA. Available at: http://www.nhlbi.nih.gov/files/docs/resources/heart/atp3full.pdf.
Google Scholar
Nelson, R.K. and Horowitz, J.F., 2014. Acute exercise ameliorates differences in insulin resistance between physically active and sedentary overweight adults. Applied Physiology, Nutrition, and Metabolism 39: 811-818.
CrossrefGoogle Scholar
Oliver, W.R., Shenk, J.L., Snaith, M.R., Russell, C.S., Plunket, K.D., Bodkin, N.L., Lewis, M.C., Winegar, D.A., Sznaidman, M.L., Lambert, M.H., Xu, H.E., Sternbach, D.D., Kliewer, S.A., Hansen, B.C. and Willson, T.M., 2001. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proceedings of the National Academy of Sciences of the United States of America 98: 5306-5311.
CrossrefGoogle Scholar
Olthof, M.R., Brink, E.J., Katan, M.B. and Verhoef, P., 2005. Choline supplemented as phosphatidylcholine decreases fasting and postmethionine-loading plasma homocysteine concentrations in healthy men. American Journal of Clinical Nutrition 82: 111-117.
CrossrefGoogle Scholar
Pattyn, N., Cornelissen, V.A., Eshghi, S.R.T. and Vanhees, L., 2013. The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome. Sports Medicine 43: 121-133.
CrossrefGoogle Scholar
Perkins, E.G., 1991. Nomenclature and classification of lipids. In: Perkins, E.G. (ed.) Analyses of fats, oils and lipoproteins. American Oil Chemists, Champaign, IL, USA, pp. 1-19.
Google Scholar
Ratliff, J., Leite, J.O., De Ogburn, R., Puglisi, M.J., VanHeest, J. and Fernandez, M.L., 2010. Consuming eggs for breakfast influences plasma glucose and ghrelin, while reducing energy intake during the next 24 hours in adult men. Nutrition Research 30: 96-103.
CrossrefGoogle Scholar
Ratliff, J.C., Mutungi, G., Puglisi, M.J., Volek, J.S. and Fernandez, M.L., 2008. Eggs modulate the inflammatory response to carbohydrate restricted diets in overweight men. Nutrition and Metabolism 5: 6.
CrossrefGoogle Scholar
Reaven, G.M., Chen, Y.D.I., Jeppesen, J., Maheux, P. and Krauss, R.M., 1993. Insulin-resistance and hyperinsulinemia in individuals with small, dense, low-density-lipoprotein particles. Journal of Clinical Investigation 92: 141-146.
CrossrefGoogle Scholar
Riechman, S.E., Kean, D., Andrews, R.D., Gasier, H. and Hammer, S., 2006. Dietary cholesterol alters recovery from eccentric muscle damage in humans. Medicine & Science in Sports & Exercise 38: S368.
Google Scholar
Riechman, S.E., Andrews, R.D., MacLean, D.A. and Sheather, S., 2007. Statins and dietary and serum cholesterol are associated with increased lean mass following resistance training. Journals of Gerontology Series A: Biological Sciences and Medical Sciences 62: 1164-1171.
CrossrefGoogle Scholar
Riechman, S.E., Lee, C.W., Chikani, G., Chen, V.C.W. and Lee, T.V., 2009. Cholesterol and skeletal muscle health. World Review of Nutrition and Dietetics 100: 71-79.
CrossrefGoogle Scholar
Riechman, S.E., Lee, C.W., Gasier, H.G. and Chikani, G., 2008. Dietary cholesterol and skeletal muscle hypertrophy with resistance training: a randomized placebo-controlled trial. Journal of the Federation of American Societies for Experimental Biology 22: 962.13.
Google Scholar
Roberts, C.K., Katiraie, M., Croymans, D.M., Yang, O.O. and Kelesidis, T., 2013. Untrained young men have dysfunctional HDL compared with strength-trained men irrespective of body weight status. Journal of Applied Physiology 115: 1043-1049.
CrossrefGoogle Scholar
Rong, Y., Chen, L., Zhu, T., Song, Y., Yu, M., Shan, Z., Sands, A., Hu, F.B. and Liu, L., 2013. Egg consumption and risk of coronary heart disease and stroke: dose-response meta-analysis of prospective cohort studies. Britisch Medical Journal 346: e8539-e8539.
Google Scholar
Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G. and Hoekstra, W.G., 1973. Selenium: biochemical role as a component of glutathione peroxidase. Science 179: 588-590.
CrossrefGoogle Scholar
Salonen, J.T., Salonen, R., Seppänen, K., Rauramaa, R. and Tuomilehto, J., 1991. HDL, HDL2, and HDL3 subfractions, and the risk of acute myocardial infarction. A prospective population study in eastern Finnish men. Circulation 84: 129-139.
Google Scholar
Santosa, S., Demonty, I., Lichtenstein, A.H. and Jones, P.J.H., 2007. Cholesterol metabolism and body composition in women: the effects of moderate weight loss. International Journal of Obesity 31: 933-941.
CrossrefGoogle Scholar
Savory, L.A., Kerr, C.J., Whiting, P., Finer, N., McEneny, J. and Ashton, T., 2012. Selenium supplementation and exercise: effect on oxidant stress in overweight adults. Obesity 20: 794-801.
CrossrefGoogle Scholar
Select Committee on Nutrition and Human Needs, 1977. Dietary goals for the United States. U.S. Goverment Printing Office, Washington, DC, USA, 83 pp.
Google Scholar
Soran, H., Hama, S., Yadav, R. and Durrington, P.N., 2012. HDL functionality. Current Opinion in Lipidology 23: 353-366.
CrossrefGoogle Scholar
Tall, A.R., 2002. Editorials: exercise to reduce cardiovascular risk – how much is enough? New England Journal of Medicine 347: 1522-1524.
CrossrefGoogle Scholar
Tribble, D.L., Holl, L.G., Wood, P.D. and Krauss, R.M., 1992. Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size. Atherosclerosis 93: 189-199.
CrossrefGoogle Scholar
Veniant, M.M., Sullivan, M.A., Kim, S.K., Ambroziak, P., Chu, A., Wilson, M.D., Hellerstein, M.K., Rudel, L.L., Walzem, R.L. and Young, S.G., 2000. Defining the atherogenicity of large and small lipoproteins containing apolipoprotein B100. Journal of Clinical Investigation 106: 1501-1510.
CrossrefGoogle Scholar
Vina, J., Sanchis-Gomar, F., Martinez-Bello, V. and Gomez-Cabrera, M.C., 2012. Exercise acts as a drug; the pharmacological benefits of exercise. British Journal of Pharmacology 167: 1-12.
CrossrefGoogle Scholar
Vislocky, L.M., Pikosky, M.A., Rubin, K.H., Vega-López, S., Gaine, P.C., Martin, W.F., Zern, T.L., Lofgren, I.E., Fernandez, M.L. and Rodriguez, N.R., 2009. Habitual consumption of eggs does not alter the beneficial effects of endurance training on plasma lipids and lipoprotein metabolism in untrained men and women. Journal of Nutritional Biochemistry 20: 26-34.
CrossrefGoogle Scholar
Walzem, R.L., 2004. Poultry, eggs and biotechnology. In: Neeser, J.R. and German, J.B. (eds.) Bioprocesses and biotechnology for functional foods and nutraceuticals. Nutraceutical science and technology. Marcel-Dekker, Inc., New York, NY, USA, pp. 1-24.
Google Scholar
Walzem, R.L., 2012. Lipoproteins and their metabolism in poultry. In: Cherian, G. and Poureslami, R. (eds.) Fats and fatty acids in poultry nutrition and health. Context Products Ltd., Ashby-de-la-Zouch, UK, pp. 37-56.
Google Scholar
Walzem, R.L., Watkins, S., Frankel, E.N., Hansen, R.J. and German, J.B., 1995. Older plasma lipoproteins are more susceptible to oxidation: a linking mechanism for the lipid and oxidation theories of atherosclerotic cardiovascular disease. Proceedings of the National Academy of Sciences of the United States of America 92: 7460-7464.
CrossrefGoogle Scholar
Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., Dugar, B., Feldstein, A.E., Britt, E.B., Fu, X., Chung, Y.M., Wu, Y., Schauer, P., Smith, J.D., Allayee, H., Tang, W.H., DiDonato, J.A., Lusis, A.J. and Hazen, S.L., 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472: 57-63.
CrossrefGoogle Scholar
Watson, R.R., 2002. Eggs and health promotion. Wiley-Blackwell, Ames, IA, USA, 202 pp.
Google Scholar
Wei, H., Averill, M.M., McMillen, T.S., Dastvan, F., Mitra, P., Subramanian, S., Tang, C., Chait, A. and Leboeuf, R.C., 2014. Modulation of adipose tissue lipolysis and body weight by high-density lipoproteins in mice. Nutrition & Diabetes 4: e108.
CrossrefGoogle Scholar
Yu, H.H., Ginsburg, G.S., O’Toole, M.L., Otvos, J.D., Douglas, P.S. and Rifai, N., 1999. Acute changes in serum lipids and lipoprotein subclasses in triathletes as assessed by proton nuclear magnetic resonance spectroscopy. Arteriosclerosis, Thrombosis, and Vascular Biology 19: 1945-1949.
CrossrefGoogle Scholar
Zazpe, I., Beunza, J.J., Bes-Rastrollo, M., Warnberg, J., De la Fuente-Arrillaga, C., Benito, S., Vazquez, Z. and Martinez-Gonzalez, M.A., 2011. Egg consumption and risk of cardiovascular disease in the SUN Project. European Journal of Clinical Nutrition 65: 676-682.
CrossrefGoogle Scholar

Related titles:



More books in this series

New titles

Purchase Options

Institutional Offers

For institutional orders, please contact [email protected].