Cover Image

Sensory ecology of disease vectors



Published: 2022  Pages: 912

eISBN: 978-90-8686-932-9 | ISBN: 978-90-8686-380-8

Book Type: Edited Collection
Akhoundi, M., Bakhtiari, R., Guillard, T., Baghaei, A., Tolouei, R., Sereno, D., Toubas, D., Depaquit, J. and Abyaneh, M.R., 2012. Diversity of the bacterial and fungal microflora from the midgut and cuticle of phlebotomine sand flies collected in North-Western Iran. PLoS ONE 7: e50259. https://doi.org/10.1371/journal.pone.0050259 Google Scholar
Alencar, R.B., de Queiroz R.G. and Barrett, T.V., 2011. Breeding sites of phlebotomine sand flies (Diptera: Psychodidae) and efficiency of extraction techniques for immature stages in terra-firme forest in Amazonas State, Brazil. Acta Tropica 118: 204-208. https://doi.org/10.1016/j.actatropica.2010.10.012 Google Scholar
Alexander, B., de Carvalho, R.L., McCallum, H. and M.H. Pereira. 2002. Role of the domestic chicken (Gallus gallus) in the epidemiology of urban visceral leishmaniasis in Brazil. Emerging Infectious Diseases 8: 1480-1485. https://doi:10.3201/eid0812.010485 Google Scholar
Allgood, D.W and Yee, D.A., 2017. Oviposition preference and offspring performance in container breeding mosquitoes: evaluating the effects of organic compounds and laboratory colonisation. Ecological Entomology 42: 506-516. https://doi.org/10.1111/een.12412 Google Scholar
Alves, J., Hamilton, J. and Brazil, R., 2003. Oviposition response of Lutzomyia (Lutzomyia) renei (Martins, Falcão & Silva) (Diptera: Psychodidae) to extracts of conspecific eggs in laboratory bioassays. Entomotropica 18: 121-126. Google Scholar
Araujo Carreira, J., Brazil, R., Carvalho, B.M. and Da Silva, A.N.M., 2018. Lutzomyia longipalpis breeding – a probable breeding substrate for Lutzomyia longipalpis in nature. Open Journal of Animal Sciences 8: 370-380. https://doi.org/10.4236/ojas.2018.84028 Google Scholar
Basimike, M., 1997. Oviposition attractant associated with conspecific development stages of Sergentomyia and Phlebotomus sandflies (Diptera., Psychodidae). Journal of Applied Entomology 121: 545-548. Google Scholar
Baum, M., Ribeiro, M.C., Lorosa, E.S., Damasio, G.A. and Castro, E.A., 2013. Eclectic feeding behaviour of Lutzomyia (Nyssomyia) intermedia (Diptera, Psychodidae, Phlebotominae) in the transmission area of American cutaneous leishmaniasis, state of Parana, Brazil. Revista da Sociedade Brasileira de Medicina Tropical 46: 560-565. https://doi.org/10.1590/0037-8682-0157-2013 Google Scholar
Bentley, M.D. and Day, J.F., 1989. Chemical ecology and behavioural aspects of mosquito oviposition. Annual Review of Entomology 34: 401-421. https://doi.org/10.1146/annurev.en.34.010189.002153 Google Scholar
Bray, D.P. and Hamilton, J.G.C., 2007. Host odor synergizes attraction of virgin female Lutzomyia longipalpis (Diptera: Psychodidae). Journal of Medical Entomology 44: 779-787. https://doi.org/10.1093/jmedent/44.5.779 Google Scholar
Bray, D.P., Bandi, K.K., Brazil, R.P., Oliveira, A.G. and Hamilton, J.G., 2009. Synthetic sex pheromone attracts the leishmaniasis vector Lutzomyia longipalpis (Diptera: Psychodidae) to traps in the field. Journal of Medical Entomology 46: 428-434. https://doi.org/10.1603/033.046.0303 CrossrefGoogle Scholar
Brodin, T., Johansson, F. and Bergsten, J., 2006. Predator related oviposition site selection of aquatic beetles (Hydroporus spp.) and effects on offspring life-history. Freshwater Biology 51: 1277-1285. https://doi.org/10.1111/j.1365-2427.2006.01563.x Google Scholar
Casanova, C. andrighetti, M.T., Sampaio, S.M., Marcoris, M.L., Colla-Jacques, F.E. and Prado, A.P., 2013. Larval breeding sites of Lutzomyia longipalpis (Diptera: Psychodidae) in visceral leishmaniasis endemic urban areas in Southeastern Brazil. PLoS Neglected Tropical Diseases 7: e2443. https://doi.org/10.1371/journal.pntd.0002443 Google Scholar
Chaniotis, B.H., 1986. Successful colonization of the sand fly Lutzomyia trapidoi (Diptera: Psychodidae), with enhancement of its gonotrophic activity. Journal of Medical Entomology 23: 163-166. Google Scholar
Chelbi, I., Kaabi, B., Derbali, M., Ahmed, S.B.H., Dellagi, K. and Zhioua, E., 2008. Zooprophylaxis: Impact of breeding rabbits around houses on reducing the indoor abundance of Phlebotomus papatasi. Vector-Borne and Zoonotic Diseases 8: 741-747. https://doi.org/10.1089/vbz.2007.0265 Google Scholar
Chowdhury, R., Kumar, V., Mondal, D., Das, M.L., Das, P., Dash, A.P and Kroeger, A., 2016. Implication of vector characteristics of Phlebotomus argentipes in the kala-azar elimination programme in the Indian sub-continent. Pathogens and Global Health 110: 87-96. https://doi.org/10.1080/20477724.2016.1180775 Google Scholar
Day, J.F., 2016. Mosquito oviposition behaviour and vector control. Insects 7: 65. https://doi.org/10.3390/insects7040065 Google Scholar
Dougherty, M. and Hamilton, G., 1997. Dodecanoic acid is the oviposition pheromone of Lutzomyia longipalpis. Journal of Chemical Ecology 23: 2657-2671. Google Scholar
Dougherty, M. Hamilton, J.J.G. and Ward, R.D., 1993. Semiochemical mediation of oviposition by the phlebotomine sandfly Lutzomyia longipalpis. Medical and Veterinary Entomology 7: 219-224. Google Scholar
Dougherty, M.J., Hamilton, J.G. and Ward, R.D., 1994. Isolation of oviposition pheromone from the eggs of the sandfly Lutzomyia longipalpis. Medical and Veterinary Entomology 8: 119-124. https://doi.org/10.1111/j.1365-2915.1994.tb00150.x Google Scholar
Dougherty, M.J., Guerin, PM. and Ward, R.D., 1995. Identification of oviposition attractants for the sandfly Lutzomyia longipalpis (Diptera, Psychodidae) in volatiles of faeces from vertebrates. Physiological Entomology 20: 23-32. https://doi.org/10.1111/j.1365-3032.1995.tb00797.x Google Scholar
Dougherty, M.J., Ward, R.D. and Hamilton, G., 1992. Evidence for the accessory-glands as the site of production of the oviposition attractant and or stimulant of Lutzomyia longipalpis (Diptera, Psychodidae). Journal of Chemical Ecology 18: 1165-1175. Google Scholar
Elnaiem, D.A. and Ward, R.D., 1992a. The thigmotropic oviposition response of the sandfly Lutzomyia longipalpis (Diptera: Psychodidae) to crevices. Annals of Tropical Medicine and Parasitology 86: 425-430. https://doi.org/10.1080/00034983.1992.11812688 Google Scholar
Elnaiem, D.A., Ward, R.D. and Rees, H.H., 1991. Chemical factors controlling oviposition of Lutzomyia longipalpis (Diptera: Psychodidae). Parassitologia 33: 217-224. Google Scholar
Elnaiem, D.E. and Ward, R.D., 1991. Response of the sandfly Lutzomyia longipalpis to an oviposition pheromone associated with conspecific eggs. Medical and Veterinary Entomology 5: 87-91. https://doi.org/10.1111/j.1365-2915.1991.tb00525.x Google Scholar
Elnaiem, D.E. and Ward, R.D., 1992b. Oviposition attractants and stimulants for the sandfly Lutzomyia longipalpis (Diptera: Psychodidae). Journal of Medical Entomology 29: 5-12. https://doi.org/10.1093/jmedent/29.1.5 Google Scholar
Faiman, R., Abbasi, I., Jaffe, C., Motro, Y., Nasereddin, A., Schnur, L.F., Torem, M., Pratlong, F., Dedet, J.P and Warburg, A., 2013. A newly emerged cutaneous leishmaniasis focus in northern Israel and two new reservoir hosts of Leishmania major. PLoS Neglected Tropical Diseases 7: e2058. https://doi.org/10.1371/journal.pntd.0002058 Google Scholar
Faw, L.R., Raymann, K., Romo Bechara, N. and Wasserberg, G., 2021. Larval conditioning and ageing of sand fly rearing medium affect oviposition site selection in Phlebotomus papatasi (Diptera: Psychodidae) sand flies. Journal of Medical Entomolology 58: 1931-1935. https://doi.org/10.1093/jme/tjab063 Google Scholar
Feliciangeli, M.D. 2004. Natural breeding places of phlebotomine sandflies. Medical and Veterinary Entomology 18: 71-80.https://doi.org/10.1111/j.0269-283x.2004.0487.x Google Scholar
Jaenike, J. 1978. On optimal oviposition behaviour in phytophagous insects. Theoretical Population Biology 14: 350356. https://doi.org/10.1016/0040-5809(78)90012-6 Google Scholar
Kakumanu, M.L., Marayati, B.F., Schal, C., Apperson, C., Wasserberg, G. and Ponnusamy, L., 2021a. Oviposition-site selection of Phlebotomus papatasi (Diptera: Psychodidae) sand flies: attraction to bacterial isolates from an attractive rearing medium. Journal of Medical Entomology 58: 518-527. https://doi.org/10.1093/jme/tjaa198 Google Scholar
Kakumanu, M.L., Marayati B.F., Katsumata, A., Wasserberg, G., schal, C., Apperson, C. and Ponnusamy, L., 2021b. Sphingobacterium phlebotosubstratum sp. nov., a new member of family Sphingobacteriaceae isolated from sand fly rearing media. International Journal of Systematic and Evolutionary Microbiology 71: 004809. https://doi.org/10.1099/ijsem.0.004809 Google Scholar
Khan, Z., Ignell, R. and Hill, S.R., 2022. Odour-mediated oviposition-site selection by mosquitoes. Chapter 14. In: Ignell, R., Lazzari, C.R., Lorenzo, M.G. and Hill, S.R. (eds.) Sensory ecology of disease vectors. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 373-417. https://doi.org/10.3920/978-90-8686-932-9_14 Google Scholar
Killick-Kendrick, R., 1999. The biology and control of phlebotomine sand flies. Clinics in Dermatology 17: 279-289. https://doi.org/10.1016/s0738-081x(99)00046-2 Google Scholar
Kowacich, D., Hatano, E., Schal C., Ponnusamy, L., Apperson, C.S., Shymanovich, T. and Wasserberg, G., 2020. The egg and larval pheromone dodecanoic acid mediates density-dependent oviposition of Phlebotomus papatasi. Parasites & Vectors 13: 280. https://doi.org/10.1186/s13071-020-04151-w Google Scholar
Kumar, V., Rama A., Kesari S., Bhunia G.S., Dinesh, D.S. and P Das. 2013. Oviposition behaviour of Phlebotomus argentipes-a laboratory-based study. Memórias do Instituto Oswaldo Cruz 108: 1065-1067. https://doi.org/10.1590/0074-0276130003 Google Scholar
Lainson, R. and Rangel E.F., 2005. Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil: a review. Memórias do Instituto Oswaldo Cruz 100: 811-827. Google Scholar
Lainson, R., Dye, C., Shaw, J., Macdonald, D.W., Courtenay, O., Souza, A. and Silveira, F., 1990. Amazonian visceral leishmaniasis – distribution of the vector Lutzomyia longipalpis (Lutz & Neiva) in relation to the fox Cerdocyon thous (Linn) and the efficiency of this reservoir host as a source of infection. Memórias do Instituto Oswaldo Cruz 85: 135-137. https://doi.org/10.1590/s0074-02762005000800001 Google Scholar
Lawyer, P., Killick-Kendrick, M., Rowland, T., Rowton, E. and Volf, P., 2017. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae). Parasite 24: 42. https://doi.org/10.1051/parasite/2017041 Google Scholar
Marayati, B.F., Schal, C., Ponnusamy, L., Apperson, C.S., Rowland, T.E. and Wasserberg, G., 2015. Attraction and oviposition preferences of Phlebotomus papatasi (Diptera: Psychodidae), vector of Old-World cutaneous leishmaniasis, to larval rearing media. Parasites & Vectors 8: 663. https://doi.org/10.1186/s13071-015-1261-z Google Scholar
Martins, A., Meirelles, M.H.A., Mota, T.F., Abbasi, I., de Queiroz, A.T.L., Brodskyn, C.I., Veras, P.S.T., Mothe Fraga, D.B. and Warburg, A., 2021. Effects of larval rearing substrates on some life-table parameters of Lutzomyia longipalpis sand flies. PLoS Neglected Tropical Diseases 15: e0009034. https://doi.org/10.1371/journal.pntd.0009034 Google Scholar
Mascari, T.M., Hanafi, H.A., Jackson, R.E., Ouahabi, S., Ameur, B., Faraj, C., Obenauer, P.J., Diclaro, J.W and Foil, L.D., 2013. Ecological and control techniques for sand flies (Diptera: Psychodidae) associated with rodent reservoirs of leishmaniasis. PLoS Neglected Tropical Diseases 7: e2434. https://doi.org/10.1371/journal.pntd.0002434 Google Scholar
Mclaughlin, L. and Wasserberg, G., 2021. Spatial bet-hedging in sand fly oviposition: Factors affecting skip oviposition in Phlebotomus papatasi sand flies. Vector Borne and Zoonotic Diseases 21: 280-288. https://doi.org/10.1089/vbz.2020.2737 Google Scholar
Millar, J.G. and Hayens, K.F., 1998. Methods in chemical ecology. Chapman and Hall, New York, NY, USA, pp. 390. Moncaz, A., Faiman, R., Kirstein, O. and Warburg, A., 2012. Breeding sites of Phlebotomus sergenti, the sand fly vector of cutaneous leishmaniasis in the Judean Desert. PLoS Neglected Tropical Diseases 6: e1725. Google Scholar
Moncaz, A., Kirstein, O., Gebresellassie, A., Lemma, W., Yared, S., Gebre-Michael, T., Hailu, A., Shenker, M. and Warburg, A., 2014. Characterisation of breeding sites of Phlebotomus orientalis – the vector of visceral leishmaniasis in northwestern Ethiopia. Acta Tropica 139: 5-14. https://doi.org/10.1371/journal.pntd.0001725 Google Scholar
Mutinga, M.J., Kamau, C.C., Kyai, F.M. and Omogo, D.M., 1989. Epidemiology of leishmaniases in Kenya: V. Wider search for breeding habitats of phlebotomine sandflies in three kala-azar endemic foci. East African Medical Journal 66: 173-182. Google Scholar
Nguyen, H.M., Kowacich, D.J. and Wasserberg, G., 2021. Temporal bet-hedging in sand fly oviposition: pharate Phlebotomus papatasi sand fly neonates regulate hatching time in response to organic matter and proximity to conspecific eggs. Vector Borne Zoonotic Diseases 21: 275-279. https://doi.org/10.1089/vbz.2020.2689 Google Scholar
Nieves, E., Ribeiro, A. and Brazil, R., 1997. Physical factors influencing the oviposition of Lutzomyia migonei (Diptera: Psychodidae) in laboratory conditions. Memórias do Instituto Oswaldo Cruz 92: 733-737. https://doi.org/10.1590/s0074-02761997000600002 Google Scholar
Peterkova-Koci, K., Robles-Murguia, M., Ramalho-Ortigao, M. and Zurek, L., 2012. Significance of bacteria in oviposition and larval development of the sand fly Lutzomyia longipalpis. Parasites & Vectors. 5: 145. https://doi.org/10.1186/1756-3305-5-145 Google Scholar
Radjame K, Srinivasan R, Dhanda V., 1997. Oviposition response of phlebotomid sandfly Phlebotomus papatasi to soil bacteria isolated from natural breeding habitats. Indian Journal of Experimental Biology 35: 59-61. Google Scholar
Rama, A., Das, P. and Kumar, V., 2016. Chemico-analysis of semiochemical compounds from pre-existing colony components influencing oviposition in Phlebotomus argentipes (Diptera: Psychodidae). International Journal of Advanced Research 4: 2099-2105. https://doi.org/10.21474/IJAR01/1695 Google Scholar
Rama, A., Kumar, V., Kesari, S., Dineash, D. and Das, P., 2014a. Exploring semiochemical based oviposition response of Phlebotomus argentipes (Diptera: Psychodidae) towards pre-existing colony ingredients. International Journal of Medicine and Pharmaceutical Sciences 4: 35-46. Google Scholar
Rama, A., Kesari, S., Dineash, D., Seema, K., Das, A. and Kumar, V., 2014b. Vertebrate excreta based semiochemical influencing oviposition and neonates’ survival in Phlebotomus argentipes-visceral leishmaniasis vector in Indian subcontinent. Journal of Entomology and Zoology Studies 2: 172-178. Google Scholar
Ready, P.D. 2013. Biology of phlebotomine sand flies as vectors of disease agents. Annual Review of Entomology 58: 227-250. https://doi.org/10.1146/annurev-ento-120811-153557 Google Scholar
Rego, F.D., Rugani, J.M., Shimabukuro, P.H., Tonelli, G.B., Quaresma, P.F. and Gontijo, C.M., 2015. Molecular detection of leishmania in phlebotomine sand flies (Diptera: Psychodidae) from a cutaneous leishmaniasis focus at Xakriaba indigenous Reserve, Brazil. PLoS ONE 10: e0122038. https://doi.org/10.1371/journal.pone.0122038 Google Scholar
Romo Bechara, N. 2021. Effects of sand fly larval rearing medium conditioning and ageing on the bacterial community structure and dynamics. MSc thesis, University of North Carolina at Greensboro, Greensboro, NC, USA, 46 pp. Ruel, D.M., Yakir, E. and Bohbot, J.D., 2018. Supersensitive odorant receptor underscores pleiotropic roles of indoles in mosquito ecology. Frontiers in Cellular Neuroscience 12: 533. https://doi.org/10.3389/fncel.2018.00533 Google Scholar
Sabio, P.B., Andrade, A.J. and Galati, E.A., 2015. Redescription of Lutzomyia (Lutzomyia) renei Martins, Falcao & Silva, 1957 (Diptera: Psychodidae: Phlebotominae). Zootaxa 3999: 589-599. https://doi.org/10.11646/zootaxa.3999.4.9 Google Scholar
Saleh, A.M., Labib, A., Abdel-Fattah, M.S., Al-Attar, M.B. and Morsy, T.A., 2015. Sand-fly Phlebotomus papatasi (Phlebotominae): a general review with special reference to zoonotic cutaneous leishmaniasis in Egypt. Journal of the Egyptian Society of Parasitology 45: 525-544. https://doi.org/10.12816/0017913 Google Scholar
Schlein, Y., Yuval, B. and Jacobson, R.L., 1989. Leishmaniasis in the Jordan Valley: differential attraction of dispersing and breeding site populations of Phlebotomus papatasi (Diptera: Psychodidae) to manure and water. Journal of Medical Entomology 26: 411-413. https://doi.org/10.1093/jmedent/26.5.411 Google Scholar
Schlein, Y., Borut, S. and Jacobson, R.L., 1990. Oviposition diapause and other factors affecting the egglaying of Phlebotomus papatasi in the laboratory. Medical and Veterinary Entomology 4: 69-78. https://doi.org/10.1111/j.1365-2915.1990.tb00262.x Google Scholar
Shymanovich, T., Faw, L., Hajhashemi, N., Teague J., Schal C.,, Ponnusamy, L., Apperson, C.S., Hatano, E. and Wasserberg, G., 2019. Diel periodicity and visual cues guide oviposition behaviour in Phlebotomus papatasi, vector of old-world cutaneous leishmaniasis. PLoS Neglected Tropical Diseases 13: e0007165. https://doi.org/10.1371/journal.pntd.0007165 Google Scholar
Singh, R., Lal, S. and Saxena, V.K., 2008. Breeding ecology of visceral leishmaniasis vector sandfly in Bihar state of India. Acta Tropica 107: 117-120. https://doi.org/10.1016/j.actatropica.2008.04.025 Google Scholar
Sivagnaname, N. and Amalraj, D.D., 1997. Breeding habitats of vector sandflies and their control in India. Journal of Communicable Diseases 29: 153-159. Google Scholar
Srinivasan, R., Radjame, K., Panicker, K.N. and Dhanda, V., 1995. Response of gravid Phlebotmus papatasi females to an oviposition attractant/stimulant associated with conspecific eggs. Indian Journal of Experimental Biology 33: 757-760. Google Scholar
Tsurim, I., Wasserberg, G., Ben Natan, G. and Abramsky, Z., 2020. Systemic control of cutaneous leishmaniasis sandfly vectors: fipronil-treated rodent bait is effective in reducing Phlebotomus papatasi (Diptera: Psychodidae) female emergence rate from rodent burrows. Journal of Medical Entomology 58: 974-978. https://doi.org/10.1093/jme/tjaa201 Google Scholar
Uzsak, A., Dieffenderfer, J., Bozkurt, A. and Schal, C., 2014. Social facilitation of insect reproduction with motor-driven tactile stimuli. Proceedings of the Royal Society B: Biological Sciences 281: 20140325. https://doi.org/10.1098/rspb.2014.0325 Google Scholar
Vinauger, C., Van Breugel, F., Locke, L.T., Tobin, K.K.S., Dickinson, M.H., Fairhall, A.L., Akbari, O.S. and Riffell, J.A., 2019. Visual-olfactory integration in the human disease vector mosquito Aedes aegypti. Current Biology 29: 25092516. https://doi.org/10.1016/j.cub.2019.06.043 Google Scholar
Vivero, R.J., Torres-Gutierrez, C., Bejarano, E.E., Pena, H.C., Estrada, L.G., Florez, F., Ortega, E., Aparicio, Y. and Muskus, C.E., 2015. Study on natural breeding sites of sand flies (Diptera: Phlebotominae) in areas of leishmania transmission in Colombia. Parasites & Vectors 8: 116. https://doi.org/10.1186/s13071-015-0711-y Google Scholar
Volf, P. and Volfova, V., 2011. Establishment and maintenance of sand fly colonies. Journal of Vector Ecology 36: S1-S9. https://doi.org/10.1111/j.1948-7134.2011.00106.x Google Scholar
Vonesh, J.R. and Blaustein, L., 2010. Predator-induced shifts in mosquito oviposition site selection: a meta-analysis and implications for vector control. Israel Journal of Ecology and Evolution 56: 263-279. https://doi.org/10.1560/IJEE.56.3-4.263 Google Scholar
Warburg, A. 1991. Entomopathogens of phlebotomine sand flies – Laboratory experiments and natural infections. Journal of Invertebrate Pathology 58: 189-202. https://doi.org/10.1016/0022-2011(91)90063-V Google Scholar
Warburg, A., Ostrovska, K. and Lawyer, P.G., 1991. Pathogens of phlebotomine sand flies: a review. Parasitología 33: 519-526. Google Scholar
Wasserberg, G. 2003. The epizootiology of cutaneous leishmaniasis in the Negev and the Arava: Application of an ecological approach for the study of an epidemiological problem. PhD dissertation, Ben-Gurion University of the Negev, Israel, 206 pp. Google Scholar
Wasserberg, G. and Rowton, E.D., 2011. Sub-additive effect of conspecific eggs and frass on oviposition rate of Lutzomyia longipalpis and Phlebotomus papatasi. Journal of Vector Ecology 36: S138-S143. https://doi.org/10.1111/j.1948-7134.2011.00123.x Google Scholar
Wasserberg, G., Bailes, N., Davis, C. and Yeoman, K., 2014. Hump-shaped density-dependent regulation of mosquito oviposition site-selection by conspecific immature stages: theory, field test with Aedes albopictus, and a metaanalysis. PLoS ONE 9: e92658. https://doi.org/10.1371/journal.pone.0092658 Google Scholar
Wasserberg, G., Abramsky, Z., Kotler, B.P., Ostfeld, R.S., Yarom, I. and Warburg, A., 2003. Anthropogenic disturbances enhance occurrence of cutaneous leishmaniasis in Israel deserts: patterns and mechanisms. Ecological Applications 13: 868-881. https://doi.org/10.1890/1051-0761(2003)013[0868:ADEOOC]2.0.CO;2 Google Scholar
Wasserberg, G., Abramsky, Z. anders, G., El-Fari, M., Schoenian, G., Schnur, L., Kotler, B.P., Kabalo, I. and Warburg, A., 2002. The ecology of cutaneous leishmaniasis in Nizzana, Israel: infection patterns in the reservoir host, and epidemiological implications. International Journal for Parasitology 32: 133-143. https://doi.org/10.1016/s0020-7519(01)00326-5 Google Scholar
Wilke, A.B.B., Carvajal, A., Medina, J. anderson, M., Nieves, V.J., Ramirez, M., Vasquez, C., Petrie, W., Cardenas, G. and Beier, J.C., 2019. Assessment of the effectiveness of BG-Sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County, Florida. PLoS ONE 14: e0212688. https://doi.org/10.1371/journal.pone.0212688 Google Scholar
Wondwosen, B., Hill, S.R., Birgersson, G., Seyoum, E., Tekie, H. and Ignell, R., 2017. A(maize)ing attraction: gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours. Malaria Journal 16: 39. https://doi.org/10.1186/s12936-016-1656-0 CrossrefGoogle Scholar
Wondwosen, B., Birgersson, G., Tekie, H., Torto, B., Ignell, R. and Hill, S.R., 2018. Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Malaria Journal 17: 90. https://doi.org/10.1186/s12936-018-2245-1 Google Scholar
Wooding, M., Naude, Rohwer, Y.E. and Bouwer, M., 2020. Controlling mosquitoes with semiochemicals: a review. Parasites & Vectors 13: 80. https://doi.org/10.1186/s13071-020-3960-3 Google Scholar
Ximenes, M.F.F.M., F., Maciel, J.C. and Jeronimo, S.M., 2001. Characteristics of the biological cycle of Lutzomyia evandroi Costa Lima & Antunes, 1936 (Diptera: Psychodidae) under experimental conditions. Memórias do Instituto Oswaldo Cruz 96: 883-886. https://doi.org/10.1590/s0074-02762001000600025 Google Scholar
Yaman, K., 2016. Semiochemical mediated oviposition and mating in Phlebotomus argentipes (Diptera: Psychodidae) sand flies. PhD thesis, Keele University, Keele, UK, 181 pp. Google Scholar

Related titles:

New titles

Institutional Offers

For institutional orders, please contact [email protected].

Purchase Options