Cover Image

Sensory ecology of disease vectors



Published: 2022  Pages: 912

eISBN: 978-90-8686-932-9 | ISBN: 978-90-8686-380-8

Book Type: Edited Collection
Abuin, L., Bargeton, B., Ulbrich, M.H., Isacoff, E.Y., Kellenberger, S. and Benton, R., 2011. Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69: 44-60. http://doi.org/10.1016/j.neuron.2010.11.042 CrossrefGoogle Scholar
Acree, F., Turner, R.B., Gouck, H.K., Beroza, M. and Smith, N., 1968. L-Lactic acid: a mosquito attractant isolated from humans. Science 161: 1346-1347. http://doi.org/10.1126/science.161.3848.1346 CrossrefGoogle Scholar
Allan, S.A., Bernier, U.R. and Kline, D.L., 2006. Attraction of mosquitoes to volatiles associated with blood. Journal of Vector Ecology 31: 71-78. https://doi.org/10.3376/1081-1710(2006)31[71:A0MTVA]2.0.C0;2 Google Scholar
Andersson, M.N., Löfstedt, C. and Newcomb, R.D., 2015. Insect olfaction and the evolution of receptor tuning. Frontiers in Ecology and Evolution 3: 53. https://doi.org/10.3389/fevo.2015.00053 CrossrefGoogle Scholar
Arensburger, P., Megy, K., Waterhouse, R.M., Abrudan, J., Amedeo, P., Antelo, B., Bartholomay, L., Bidwell, S., Caler, E., Camara, F., Campbell, C.L., Campbell, K.S., Casola, C., Castro, M.T., Chandramouliswaran, I., Chapman, S.B., Christley, S., Costas, J., Eisenstadt, E., Feschotte, C., Fraser-Liggett, C., Guigo, R., Haas, B., Hammond, M., Hansson, B.S., Hemingway, J., Hill, S.R., Howarth, C., Ignell, R., Kennedy, R.C., Kodira, C.D., Lobo, N.F., Mao, C., Mayhew, G., Michel, K., Mori, A., Liu, N., Naveira, H., Nene, V., Nguyen, N., Pearson, M.D., Pritham, E.J., Puiu, D., Qi, Y., Ranson, H., Ribeiro, J.M.C., Roberston, H.M., Severson, D.W, Shumway, M., Stanke, M., Strausberg, R.L., Sun, C., Sutton, G., Tu, Z., Tubio, J.M.C., Unger, M.F., Vanlandingham, D.L., Vilella, A.J., White, O., White, J.R., Wondji, C.S., Wortman, J., Zdobnov, E.M., Birren, B., Christensen, B.M., Collins, F.H., Cornel, A., Dimopoulos, G., Hannick, L.I., Higgs, S., Lanzaro, G.C., Lawson, D., Lee, N.H., Muskavitch, M.A.T., Raikhel, A.S. and Atkinson, P.W., 2010. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 330: 86-88. https://doi.org/10.1126/science.1191864 CrossrefGoogle Scholar
Arguello, J.R. and Benton, R., 2017. Open questions: Tackling Darwin’s 'instincts’: the genetic basis of behavioral evolution. BMC Biology 15: 26. https://doi.org/10.1186/s12915-017-0369-3 CrossrefGoogle Scholar
Asale, A., Duchateau, L., Devleesschauwer, B., Huisman, G. and Yewhalaw, D., 2017. Zooprophylaxis as a control strategy for malaria caused by the vector Anopheles arabiensis (Diptera: Culicidae): a systematic review. Infectious Diseases of Poverty 6: 160. https://doi.org/10.1186/s40249-017-0366-3 CrossrefGoogle Scholar
Athrey, G., Cosme, L.V., Popkin-Hall, Z., Pathikonda, S., Takken, W. and Slotman, M.A., 2017. Chemosensory gene expression in olfactory organs of the anthropophilic Anopheles coluzzii and zoophilic Anopheles quadriannulatus. BMC Genomics 18: 751. https://doi.org/10.1186/s12864-017-4122-7 CrossrefGoogle Scholar
Auer, T.O., Khallaf, M.A., Silbering, A.F., Zappia, G., Ellis, K., Álvarez-Ocaña, R., Arguello, J.R., Hansson, B.S., Jefferis, G.S.X.E., Caron, S.J.C., Knaden, M. and Benton, R., 2020. Olfactory receptor and circuit evolution promote host specialization. Nature 579: 402-408. https://doi.org/10.1038/s41586-020-2073-7 CrossrefGoogle Scholar
Ayala, FJ. and Coluzzi, M., 2005. Chromosome speciation: humans, Drosophila, and mosquitoes. Proceedings of the National Academy of Sciences of the USA 102: 6535-6542. https://doi.org/10.1073/pnas.0501847102 CrossrefGoogle Scholar
Beier, J.C., Perkins, P.V., Wirtz, R.A., Koros, J., Diggs, D., Gargan, T.P and Koech, G., 1988. Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culicidae) in Kenya. Journal of Medical Entomology 25: 9-16. https://doi.org/10.1093/jmedent/25.1.9 CrossrefGoogle Scholar
Benton, R., Vannice, K.S., Gomez-Diaz, C. and Vosshall, L.B., 2009. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136: 149-162. https://doi.org/10.1016/j.cell.2008.12.001 CrossrefGoogle Scholar
Bernier, U.R., Allan, S.A., Quinn, B.P., Kline, D.L., Barnard, D.R. and Clark, G.G., 2008. Volatile compounds from the integument of White Leghorn chickens (Gallus gallus domesticus L.): candidate attractants of ornithophilic mosquito species. Journal of Separation Science 31: 1092-1099. https://doi.org/10.1002/jssc.200700434 CrossrefGoogle Scholar
Bernier, U.R., Booth, M.M. and Yost, R.A., 1999. Analysis of human skin emanations by gas chromatography/mass spectrometry. 1. Thermal desorption of attractants for the yellow fever mosquito (Aedes aegypti) from handled glass beads. Analytical Chemistry 71: 1-7. https://doi.org/10.1021/ac980990v CrossrefGoogle Scholar
Bernier, U.R., Kline, D.L., Barnard, D.R., Schreck, C.E. and Yost, R.A., 2000. Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Analytical Chemistry 72: 747-756. https://doi.org/10.1021/ac990963k CrossrefGoogle Scholar
Besansky, N.J., Hill, C.A. and Costantini, C., 2004. No accounting for taste: host preference in malaria vectors. Trends in Parasitology 20: 249-251. https://doi.org/10.1016/j.pt.2004.03.007 CrossrefGoogle Scholar
Besansky, N.J., Powello, J.R., Cacconet, A., Hamm, D.M., Scott, J.A. and Collins, F.H., 1994. Molecular phylogeny of the Anopheles gambiae complex suggests genetic introgression between principal malaria vectors. Proceedings of the National Academy of Sciences of the USA 91: 6885-6888. https://doi.org/10.1073/pnas.91.15.6885 CrossrefGoogle Scholar
Birkett, M.A., Agelopoulos, N., Jensen, K.M., Jespersen, J.B., Pickett, J.A., Prijs, H.J., Thomas, G., Trapman, J.J., Wadhams, L.J. and Woodcock, C.M., 2004. The role of volatile semiochemicals in mediating host location and selection by nuisance and disease-transmitting cattle flies. Medical and Veterinary Entomology 18: 313-322. https://doi.org/10.1111/j.0269-283X.2004.00528.x CrossrefGoogle Scholar
Blum, M.S., 1996. Semiochemical parsimony in the Arthropoda. Annual Review of Entomology 41: 353-374. https://doi.org/10.1146/annurev.en.41.010196.002033 CrossrefGoogle Scholar
Bohbot, J., Pitts, R.J., Kwon, H.W., Rützler, M., Robertson, H.M. and Zwiebel, L.J., 2007. Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Molecular Biology 16: 525-537. https://doi.org/10.1111/j.1365-2583.2007.00748.x CrossrefGoogle Scholar
Boreham, P.F.L. and Garrett-Jones, C., 1973. Prevalence of mixed blood meals and double feeding in a malaria vector (Anopheles sacharovi Favre). Bulletin of the World Health Organization 48: 605-614. Google Scholar
Bosch, O.J., Geier, M. and Boeckh, J., 2000. Contribution of fatty acids to olfactory host finding of female Aedes aegypti. Chemical Senses 25: 323-330. https://doi.org/10.1093/oxfordjournals.chemse.a014042 CrossrefGoogle Scholar
Bowen, M.F., 1992. Terpene-sensitive receptors in female Culex pipiens mosquitoes: electrophysiology and behaviour. Journal of Insect Physiology 38: 759-764. https://doi.org/10.1016/0022-1910(92)90028-C CrossrefGoogle Scholar
Braks, M.A.H., Meijerink, J. and Takken, W., 2001. The response of the malaria mosquito, Anopheles gambiae, to two components of human sweat, ammonia and L-lactic acid, in an olfactometer. Physiological Entomology 26: 142148. https://doi.org/10.1046/j.1365-3032.2001.00227.x CrossrefGoogle Scholar
Bruce-Chwatt, L.J., Garrett-Jones, C. and Weitz, B., 1966. Ten years’ study (1955-64) of host selection by anopheline mosquitos. Bulletin of the World Health Organization 35: 405. CrossrefGoogle Scholar
Busula, A.O., Takken, W., Loy, D.E., Hahn, B.H., Mukabana, W.R. and Verhulst, N.O., 2015. Mosquito host preferences affect their response to synthetic and natural odour blends. Malaria Journal 14: 133. https://doi.org/10.1186/s12936-015-0635-1 CrossrefGoogle Scholar
Cande, J., Prud’homme, B. and Gompel, N., 2013. Smells like evolution: the role of chemoreceptor evolution in behavioral change. Current Opinion in Neurobiology 23: 152-158. https://doi.org/10.1016/jxonb.2012.07.008 Google Scholar
Cardé, R.T., 2015. Multi-cue integration: how female mosquitoes locate a human host. Current Biology 25: R793-R795. https://doi.org/10.1016/jxub.2015.07.057 Google Scholar
Carey, A.F., Wang, G., Su, C., Zwiebel, L.J. and Carlson, J.R., 2010. Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464: 66-71. https://doi.org/10.1038/nature08834 CrossrefGoogle Scholar
Chen, J., Luo, J., Gurav, A.S., Chen, Z., Wang, Y. and Montell, C., 2021. A DREaMR system to simplify combining mutations with rescue transgenes in Aedes aegypti. Genetics 219: iyab147. https://doi.org/10.1093/genetics/iyab146 CrossrefGoogle Scholar
Chen, Z., Liu, F. and Liu, N., 2019. Human odour coding in the yellow fever mosquito, Aedes aegypti. Scientific Reports 9: 13336. https://doi.org/10.1038/s41598-019-49753-2 CrossrefGoogle Scholar
Clements, A.N., 1999. The biology of mosquitoes. Volume 2: sensory reception and behaviour. CABI publishing, Wallingford, UK, pp. 752. Google Scholar
Clyne, P.J., Warr, C.G., Freeman, M.R., Lessing, D., Kim, J. and Carlson, J.R., 1999. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22: 327-338. https://doi.org/10.1016/S0896-6273(00)81093-4 CrossrefGoogle Scholar
Coetzee, M., Hunt, R.H., Wilkerson, R., della Torre, A., Coulibaly, M.B. and Besansky, N.J., 2013. Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa 3619: 246-274. https://doi.org/10.11646/zootaxa.3619.3.2 CrossrefGoogle Scholar
Cooperband, M.F., McElfresh, J.S., Millar, J.G. and Carde, R.T., 2008. Attraction of female Culex quinquefasciatus Say (Diptera: Culicidae) to odors from chicken feces. Journal of Insect Physiology 54: 1184-1192. https://doi.org/10.1016/j.jinsphys.2008.05.003 CrossrefGoogle Scholar
Cork, A. and Park, K.C., 1996. Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Medical and Veterinary Entomology 10: 269-276. https://doi.org/10.1111/j.1365-2915.1996.tb00742.x CrossrefGoogle Scholar
Costantini, C., Sagnon, N., della Torre, A., Diallo, M., Brady, J., Gibson, G. and Coluzzi, M., 1998. Odor-mediated host preferences of West African mosquitoes, with particular reference to malaria vectors. American Journal of Tropical Medicine and Hygiene 58: 56-63. CrossrefGoogle Scholar
Costantini, C., Sagnon, N.F., Torre, A.D. and Coluzzi, M., 1999. Mosquito behavioural aspects of vector-human interactions in the Anopheles gambiae complex. Parassitologia 41: 209-220. Google Scholar
Costantini, C., Birkett, M.A., Gibson, G., Ziesmann, J., Sagnon, N.F. and Mohammed, H.A., 2001. Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components. Medical and Veterinary Entomology 15: 259-266. https://doi.org/10.1046/j.0269-283x.2001.00297.x CrossrefGoogle Scholar
Crawford, J.E., Alves, J.M., Palmer, W.J., Day, J.P., Sylla, M., Ramasamy, R., Surendran, S.N., Black, W.C., Pain, A. and Jiggins, F.M., 2017. Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biology 15: 1-16. https://doi.org/10.1186/s12915-017-0351-0 CrossrefGoogle Scholar
Curran, A.M., Rabin, S.I., Prada, P.A. and Furton, K.G., 2005. Comparison of the volatile organic compounds present in human odor using SPME-GC/MS. Journal of Chemical Ecology 31: 1607-1619. https://doi.org/10.1007/s10886-005-5801-4 CrossrefGoogle Scholar
de Fouchier, A., Walker, W.B., Montagne, N., Steiner, C., Binyameen, M., Schlyter, F., Chertemps, T., Maria, A., François, M-C., Monsempes, C., Anderson, P., Hansson, B.S., Larsson, M.C. and Jacquin-Joly, E., 2017. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nature 8: 15709. https://doi.org/10.1038/ncomms15709 CrossrefGoogle Scholar
de Silva, W.P.P., Bernal, X.E., Chathuranga, W.G.D., Herath, B.P., Ekanayake, C., Abeysundara, H.T.K. and Karunaratne, S.H.P.P., 2020. Feeding patterns revealed host partitioning in a community of frog-biting mosquitoes. Ecological Entomology 45: 988-996. https://doi.org/10.nn/een.12874. CrossrefGoogle Scholar
DeGennaro, M., McBride, C.S., Seeholzer, L., Nakagawa, T., Dennis, E.J., Goldman, C., Jasinskiene, N., James, A.A. and Vosshall, L.B., 2013. Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498: 487-491. https://doi.org/10.1038/nature12206 CrossrefGoogle Scholar
Dekel, A., Yakir, E. and Bohbot, J.D., 2019. The sulcatone receptor of the strict nectar-feeding mosquito Toxorhynchites amboinensis. Insect Biochemistry and Molecular Biology 111: 103174. https://doi.org/10.1016/j.ibmb.2019.05.009 CrossrefGoogle Scholar
Dekker, T., Geier, M. and Cardé, R.T., 2005. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. Journal of Experimental Biology 208: 2963-2972. https://doi.org/10.1242/jeb.01736 CrossrefGoogle Scholar
Dekker, T., Steib, B., Cardé, R.T. and Geier, M., 2002. L-lactic acid: a human signifying host cue for the anthropophilic mosquito Anopheles gambiae. Medical and Veterinary Entomology 16: 91. https://doi.org/10.1046/j.0269-283x.2002.00345.x CrossrefGoogle Scholar
De Moraes, C.M., Stanczyk, N.M., Betz, H.S., Pulido, H., Sim, D.G., Read, A.F. and Mescher, M.C., 2014. Malaria-induced changes in host odors enhance mosquito attraction. Proceedings of the National Academy of Sciences of the USA 111: 11079-11084. https://doi.org/10.1073/pnas.1405617111 CrossrefGoogle Scholar
Donnelly, B., Berrang-Ford, L., Ross, N.A. and Michel, P., 2015. A systematic, realist review of zooprophylaxis for malaria control. Malaria Journal 14: 313. https://doi.org/10.1186/s12936-015-0822-0 CrossrefGoogle Scholar
Edman, J.D. and Taylor, D.J., 1968. Culex nigripalpus: seasonal shift in the bird-mammal feeding ratio in a mosquito vector of human encephalitis. Science 161: 67-68. https://doi.org/10.1126/science.161.3836.67 CrossrefGoogle Scholar
Egas, M., Dieckmann, U. and Sabelis, M.W., 2004. Evolution restricts the coexistence of specialists and generalists: the role of trade-off structure. The American Naturalist 163: 518-531. https://doi.org/10.1086/382599 CrossrefGoogle Scholar
Fikrig, K. and Harrington, L., 2021. Understanding and interpreting mosquito blood feeding studies: the case of Aedes albopictus. Trends in Parasitology 37: 959-975. https://doi.org/10.1016/j.pt.2021.07.013 CrossrefGoogle Scholar
Flint, J., Harding, R.M., Boyce, A.J. and Clegg, J.B., 1993. 8 the population genetics of the haemoglobinopathies. Baillières Clinical Haematology 6: 215-262. https://doi.org/10.1016/S0950-3536(05)80071-X CrossrefGoogle Scholar
Fonseca, D.M., Keyghobadi, N., Malcolm, C.A., Mehmet, C., Schaffner, F., Mogi, M., Fleischer, R. and Wilkerson, R., 2004. Emerging vectors in the Culexpipiens complex. Science 303: 1535-1539. https://doi.org/10.1126/science.1094247 CrossrefGoogle Scholar
Futuyma, D.J. and Moreno, G., 1988. The evolution of ecological specialization. Annual Review of Ecology and Systematics 19: 207-233. CrossrefGoogle Scholar
Galizia, C.G. and Rössler, W., 2010. Parallel olfactory systems in insects: anatomy and function. Annual Review of Entomology 55: 399-420. https://doi.org/10.1146/annurev-ento-112408-085442 CrossrefGoogle Scholar
Gao, Q. and Chess, A., 1999. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60: 31-39. https://doi.org/10.1006/geno.1999.5894 CrossrefGoogle Scholar
Garrett-Jones, C., 1964. The human blood index of malaria vectors in relation to epidemiological assessment. Bulletin of the World Health Organization 30: 241. Google Scholar
Geier, M., Bosch, O.J. and Boeckh, J., 1999. Ammonia as an attractive component of host odour for the yellow fever mosquito, Aedes aegypti. Chemical Senses 24, 647-653. https://doi.org/10.1093/chemse/24.6.647 CrossrefGoogle Scholar
Ghaninia, M., Hansson, B.S. and Ignell, R., 2007a. The antennal lobe of the African malaria mosquito, Anopheles gambiae – innervation and three-dimensional reconstruction. Arthropod Structure & Development 36: 23-39. https://doi.org/10.1016/j.asd.2006.06.004 CrossrefGoogle Scholar
Ghaninia, M., Ignell, R. and Hansson, B., 2007b. Functional classification and central nervous projections of olfactory receptor neurons housed in antennal trichoid sensilla of female yellow fever mosquitoes, Aedes aegypti. European Journal of Neuroscience 26: 1611-1623. https://doi.org/10.1111/j.1460-9568.2007.05786.x CrossrefGoogle Scholar
Ghaninia, M., Majeed, S., Dekker, T., Hill, S.R. and Ignell, R., 2019. Hold your breath – differential behavioral and sensory acuity of mosquitoes to acetone and carbon dioxide. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0226815 CrossrefGoogle Scholar
Gikonyo, N.K., Hassanali, A., Njagi, P.G., Gitu, PM. and Midiwo, J.O., 2002. Odor composition of preferred (buffalo and ox) and nonpreferred (waterbuck) hosts of some savanna tsetse flies. Journal of Chemical Ecology 28: 969981. https://doi.org/10.1023/A:1015205716921 CrossrefGoogle Scholar
Gillies, M.T., 1964. Selection for host preference in Anopheles gambiae. Nature 203: 852. CrossrefGoogle Scholar
Gouck, H.K., 1972. Host preferences of various strains of Aedes aegypti and A. simpsoni as determined by an olfactometer. Bulletin of the World Health Organization 5: 680-683. Google Scholar
Hallem, E.A. and Carlson, J.R., 2006. Coding of odors by a receptor repertoire. Cell 125: 143-160. https://doi.org/10.1016/j.cell.2006.01.050 CrossrefGoogle Scholar
Hallem, E.A., Ho, M.G. and Carlson, J.R., 2004. The molecular basis of odor coding in the Drosophila antenna. Cell 117: 965-979. https://doi.org/10.1016/j.cell.2004.05.012 CrossrefGoogle Scholar
Harraca, V., Syed, Z. and Guerin, PM., 2009. Olfactory and behavioural responses of tsetse flies, Glossina spp., to rumen metabolites. Journal of Comparative Physiology A 195: 815-824. https://doi.org/10.1007/s00359-009-0459-y CrossrefGoogle Scholar
Harrington, L.C., Edman, J.D. and Scott, T.W., 2001. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? Journal of Medical Entomology 38: 411-422. https://doi.org/10.1603/0022-2585-38.3.411 CrossrefGoogle Scholar
Harris, P., Riordan, D.F. and Cooke, D., 1969. Mosquitoes feeding on insect larvae. Science 164: 184-185. https://doi.org/10.1126/science.164.3876.184 CrossrefGoogle Scholar
Healy, T.P., Copland, M.J.W, Cork, A., Przyborowska, A. and Halket, J.M., 2002. Landing responses of Anopheles gambiae elicited by oxocarboxylic acids. Medical and Veterinary Entomology 16: 126-132. https://doi.org/10.1046/j.1365-2915.2002.00353.x CrossrefGoogle Scholar
Heisenberg, M., 2003. Mushroom body memoir: from maps to models. Nature Reviews Neuroscience 4: 266-275. https://doi.org/10.1038/nrn1074 CrossrefGoogle Scholar
Herre, M., Goldman, O.V., Lu, T.C., Caballero-Vidal, G., Qi, Y., Gilbert, Z.N., Gong, Z., Morita, T., Rahiel, S., Ghaninia, M., Ignell, R., Matthews, B.J., Li, H., Vosshall, L.B. and Younger, M.A., 2022. Non-canonical odor coding in the mosquito. Cell 185: 3104-3123. https://doi.org/10.1016/j.cell.2022.07.024 CrossrefGoogle Scholar
Hess, A.D., Hayes, R.O. and Tempelis, C.H., 1968. The use of the forage ratio technique in mosquito host preference studies. Mosquito News 28: 386-389. Google Scholar
Hill, S.R., Majeed, S. and Ignell, R., 2015. Molecular basis for odorant receptor tuning: a short C-terminal sequence is necessary and sufficient for selectivity of mosquito Or8. Insect Molecular Biology 24: 491-501. https://doi.org/10.1111/imb.12176 CrossrefGoogle Scholar
Holt, R.A., Subramanian, G.M., Halpern, A., Sutton, G.G., Charlab, R., Nusskern, D.R., Wincker, P., Clark, A.G., Ribeiro, J.C., Wides, R. and Salzberg, S.L., 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129-149. https://doi.org/10.1126/science.1076181 CrossrefGoogle Scholar
Homan, T., Hiscox, A., Mweresa, C.K., Masiga, D., Mukabana, W.R., Oria, P., Maire, N., Pasquale, A.D., Silkey, M., Alaii, J., Bousema, T., Leeuwis, C., Smith, T.A. and Takken, W., 2016. The effect of mass mosquito trapping on malaria transmission and disease burden (SolarMal): a stepped-wedge cluster-randomised trial. The Lancet 388: 1193-1201.https://doi.org/10.1016/S0140-6736(16)30445-7 CrossrefGoogle Scholar
Ignell, R. and Hill, S.R., 2020. Malaria mosquito chemical ecology. Current Opinion in Insect Science 40: 6-10. https://doi.org/10.1016/j.cois.2020.03.008 CrossrefGoogle Scholar
Isberg, E., Bray, D.P., Birgersson, G., Hillbur, Y. and Ignell, R., 2016. Identification of cattle-derived volatiles that modulate the behavioral response of the biting midge Culicoides nubeculosus. Journal of Chemical Ecology 42, 24-32.https://doi.org/10.1007/s10886-015-0663-x CrossrefGoogle Scholar
Jaenike, J., 1990. Host specialization in phytophagous insects. Annual Review of Ecology and Systematics 21: 243-273. Jaleta, K.T., Hill, S.R., Birgersson, G., Tekie, H. and Ignell, R., 2016. Chicken volatiles repel host-seeking malaria mosquitoes. Malaria Journal 15: 354. https://doi.org/10.1186/s12936-016-1386-3 CrossrefGoogle Scholar
Jhumur, U.S., Dötterl, S. and Jürgens, A., 2007. Electrophysiological and behavioural responses of mosquitoes to volatiles of Silene otites (Caryophyllaceae). Arthropod-Plant Interactions 1: 245-254. https://doi.org/10.1007/s11829-007-9022-3 CrossrefGoogle Scholar
Karner, T., Kellner, I., Schultze, A., Breer, H. and Krieger, J., 2015. Co-expression of six tightly clustered odorant receptor genes in the antenna of the malaria mosquito Anopheles gambiae. Frontiers in Ecology and Evolution 3: 26. https://doi.org/10.3389/fevo.2015.00026 CrossrefGoogle Scholar
Kay, B.H., Boreham, P.F.L. and Edman, J.D., 1979. Application of the 'feeding index’ concept to studies of mosquito host-feeding patterns. Mosquito News 39: 68-72. Google Scholar
Kilpatrick, A.M., Kramer, L.D., Jones, M.J., Marra, P.P. and Daszak, P., 2006. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biology 4: e28. https://doi.org/10.1371/journal.pbio.0040082 CrossrefGoogle Scholar
Knaden, M., Strutz, A., Ahsan, J., Sachse, S. and Hansson, B.S., 2012. Spatial representation of odorant valence in an insect brain. Cell Reports 1: 392-399. https://doi.org/10.1016/jxelrep.2012.03.002 Google Scholar
Knols, B., De Jong, R. and Takken, W., 1994. Trapping system for testing olfactory responses of the malaria mosquito Anopheles gambiae in a wind tunnel. Medical and Veterinary Entomology 8: 386-388. https://doi.org/10.1111/j.1365-2915.1994.tb00104.x CrossrefGoogle Scholar
Knols, B.G.J., Van Loon, J.J.A., Cork, A., Robinson, R.D., Adam, W., Meijerink, J., De Jong, R. and Takken, W., 1997. Behavioural and electrophysiological responses of the female malaria mosquito Anopheles gambiae (Diptera: Culicidae) to Limburger cheese volatiles. Bulletin of Entomological Research 87: 151-159. https://doi.org/10.1017/S0007485300027292 CrossrefGoogle Scholar
Knudsen, J.T., Eriksson, R., Gershenzon, J. and Stähl, B., 2006. Diversity and distribution of floral scent. The Botanical Review 72: 1-120. https://doi.org/10.1663/0006-8101(2006)72[1:DAD0FS]2.0.C0;2 Google Scholar
Konopka, J.K., Task, D., Afify, A., Raji, J., Deibel, K., Maguire, S., Lawrence, R. and Potter, C.J., 2021. Olfaction in Anopheles mosquitoes. Chemical Senses 46: bjab021. https://doi.org/10.1093/chemse/bjab021 CrossrefGoogle Scholar
Krzywinski, J., Grushko, 0.G. and Besansky, N.J., 2006. Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. Molecular Phylogenetics and Evolution 39: 417-423. https://doi.org/10.1016/j.ympev.2006.01.006 CrossrefGoogle Scholar
Lacey, E.S., Ray, A. and Carde, R.T., 2014. Close encounter: contributions of carbon dioxide and human skin odour to finding and landing on a host in Aedes aegypti. Physiological Entomology 39: 60-68. https://doi.org/10.1111/phen.12048 CrossrefGoogle Scholar
Larsson, M.C., Domingos, A.I., Jones, W.D., Chiappe, M.E., Amrein, H. and Vosshall, L.B., 2004. 0r83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43: 703-714. https://doi.org/10.1016/j.neuron.2004.08.019 CrossrefGoogle Scholar
Leal, W.S., 2013. 0dorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology 58: 373-391. https://doi.org/10.1146/annurev-ento-120811-153635 CrossrefGoogle Scholar
Lefèvre, T., Gouagna, L.C., Dabire, K.R., Elguero, E., Fontenille, D., Costantini, C. and Thomas, F., 2009a. Evolutionary lability of odour-mediated host preference by the malaria vector Anopheles gambiae. Tropical Medicine & International Health 14: 228-236. https://doi.org/10.1111/j.1365-3156.2009.02206.x CrossrefGoogle Scholar
Lefèvre, T., Gouagna, L., Dabiré, K.R., Elguero, E., Fontenille, D., Renaud, F., Costantini, C. and Thomas, F., 2009b. Beyond nature and nurture: phenotypic plasticity in blood-feeding behavior of Anopheles gambiae s.s. when humans are not readily accessible. The American Journal of Tropical Medicine and Hygiene 81: 1023-1029. https://doi.org/10.4269/ajtmh.2009.09-0124 CrossrefGoogle Scholar
Lehane, M.J., 2005. The biology of blood-sucking in insects. Cambridge University Press, Cambridge, UK, pp. 336. CrossrefGoogle Scholar
Liu, F., Ye, Z., Baker, A., Sun, H. and Zwiebel, L.J., 2020. Gene editing reveals obligate and modulatory components of the CO2 receptor complex in the malaria vector mosquito, Anopheles coluzzii. Insect Biochemistry and Molecular Biology 127: 103470. https://doi.org/10.1016/j.ibmb.2020.103470 CrossrefGoogle Scholar
Liu, H., Liu, T., Xie, L., Wang, X., Deng, Y., Chen, C.H., James, A.A. and Chen, X.G., 2016. Functional analysis of Orco and odorant receptors in odor recognition in Aedes albopictus. Parasites & Vectors 9: 363. https://doi.org/10.1186/s13071-016-1644-9 CrossrefGoogle Scholar
Logan, J.G., Stanczyk, N.M., Hassanali, A., Kemei, J., Santana, A.E.G. Ribeiro, K.A.L., Pickett, J.A. and Mordue, A.J., 2010. Arm-in-cage testing of natural human-derived mosquito repellents. Malaria Journal 9: 239. https://doi.org/10.1186/1475-2875-9-239 CrossrefGoogle Scholar
Lu, T., Qiu, Y.T., Wang, G., Kwon, J.Y., Rutzler, M., Kwon, H., Pitts, R.J., Van Loon, J.J.A., Takken, W., Carlson, J.R. and Zwiebel, L.J., 2007. Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Current Biology 17: 1533-1544. https://doi.org/10.1016/jxub.2007.07.062 Google Scholar
Lulu, M., Hadis, M., Mekonnen, Y. and Asfaw, T., 1998. Chromosomal inversion polymorphisms of Anopheles arabiensis from some localities in Ethiopia in relation to host feeding choice. Ethiopian Journal of Health Development 12: 23-28. Google Scholar
Lyimo, I.N. and Ferguson, H.M., 2009. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends in Parasitology 25: 189-196. https://doi.org/10.1016/j.pt.2009.01.005 CrossrefGoogle Scholar
Lyimo, I.N., Keegan, S.P., Ranford-Carthwright, L.C. and Ferguson, H.M., 2012. The impact of uniform and mixed species blood meals on the fitness of the mosquito vector Anopheles gambiae s.s.: does a specialist pay for diversifying its host species diet? Journal of Evolutionary Biology 25: 452-460. https://doi.org/10.1111/j.1420-9101.2011.02442.x CrossrefGoogle Scholar
MacArthur, R.H. and Pianka, E.R., 1966. On optimal use of a patchy environment. The American Naturalist 100: 603-609.https://doi.org/10.1086/282454 CrossrefGoogle Scholar
Main, B.J., Lee, Y., Ferguson, H.M., Kreppel, K.S., Kihonda, A., Govella, N.J., Collier, T.C., Cornel, A.J., Eskin, E., Kang, E.Y., Nieman, C.C., Weakley, A.M. and Lanzaro, G.C., 2016. The genetic basis of host preference and resting behavior in the major African malaria vector, Anopheles arabiensis. PLoS Genetics 12: e1006303. https://doi.org/10.1371/journal.pgen.1006303 CrossrefGoogle Scholar
Majeed, S., Hill, S.R., Birgersson, G. and Ignell, R., 2016. Detection and perception of generic host volatiles by mosquitoes modulate host preference: context dependence of fR)-1-octen-3-ol. Royal Society Open Science 3: 160467. https://doi.org/10.1098/rsos.160467 CrossrefGoogle Scholar
Majeed, S., Hill, S.R., Dekker, T. and Ignell, R., 2017. Detection and perception of generic host volatiles by mosquitoes: responses to CO2 constrains host-seeking behaviour. Royal Society Open Science 4: 170189. https://doi.org/10.1098/rsos.170189 CrossrefGoogle Scholar
Matsunaga, T., Reisenman, C.E., Goldman-Huertas, B., Brand, P., Miao, K., Suzuki, H.C., Verster, K.I., Ramírez, S.R. and Whiteman, N.K, 2022. Evolution of olfactory receptors tuned to mustard oils in herbivorous Drosophilidae. Molecular Biology and Evolution 39: msab362. https://doi.org/10.1093/molbev/msab362 CrossrefGoogle Scholar
Matthews, B.J., Dudchenko, O., Kingan, S.B., Koren, S., Antoshechkin, I., Crawford, J.E., Glassford, W.J., Herre, M., Redmond, S.N., Rose, N.H., Weedall, G.D., Wu, Y., Batra, S.S., Brito-Sierra, C.A., Buckingham, S.D., Campbell, C.L., Chan, S., Cox, E., Evans, B.R., Fansiri, T., Filipovic, I., Fontaine, A., Gloria-Soria, A., Hall, R., Joardar, V.S., Jones, A.K., Kay, R.G.G., Kodali, V.K., Lee, J., Lycett, G.J., Mitchell, S.N., Muehling, J., Murphy, M.R., Omer, A.D., Partridge, F.A., Peluso, P., Aiden, A.P., Ramasamy, V., Rasic, G., Roy, S., Saavedra-Rodriguez, K., Sharan, S., Sharma, A., Smith, M.L., Turner, J., Weakley, A.M., Zhao, Z., Akbari, O.S., Black, W.C., Cao, H., Darby, A.C., Hill, C.A., Johnston, J.S., Murphy, T.D., Raikhel, A.S., Sattelle, D.B., Sharakhov, I.V., White, B.J., Zhao, L., Aiden, E.L., Mann, R.S., Lambrechts, L., Powell, J.R., Sharakhova, M.V., Tu, Z., Robertson, H.M., McBride, C.S., Hastie, A.R., Korlach, J., Neafsey, D.E., Phillippy, A.M. and Vosshall, L.B, 2018. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 563: 501-507. https://doi.org/10.1038/s41586-018-0692-z CrossrefGoogle Scholar
McBride, C.S., 2016. Genes and odors underlying the recent evolution of mosquito preference for humans. Current Biology 26: R41-R46. https://doi.org/10.1016/j.cub.2015.11.032 CrossrefGoogle Scholar
McBride, C.S., Baier, F., Omondi, A.B., Spitzer, S.A., Lutomiah, J., Sang, R., Ignell, R. and Vosshall, L.B., 2014. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515: 222-227. https://doi.org/10.1038/nature13964 CrossrefGoogle Scholar
McMeniman, C.J., Corfas, R.A., Matthews, B.J., Ritchie, S.A. and Vosshall, L.B., 2014. Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell 156: 1060-1071. https://doi.org/10.1016/j.cell.2013.12.044 CrossrefGoogle Scholar
Meijerink, J., Braks, M.A.H., Brack, A.A., Adam, W., Dekker, T., Posthumus, M.A., Van Beek, T.A. and Van Loon, J.J.A., 2000. Identification of olfactory stimulants for Anopheles gambiae from human sweat samples. Journal of Chemical Ecology 26: 1367-1382. https://doi.org/10.1023/A:1005475422978 CrossrefGoogle Scholar
Menger, D.J., Van Loon, J.J. and Takken, W., 2014. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Medical and Veterinary Entomology 28: 407-413. https://doi.org/10.1111/mve.12061 CrossrefGoogle Scholar
Meza, F.C., Kreppel, K.S., Maliti, D.F., Mlwale, A.T., Mirzai, N., Killeen, G.F., Ferguson, H.M. and Govella, N.J., 2019. Mosquito electrocuting traps for directly measuring biting rates and host-preferences of Anopheles arabiensis and Anopheles funestas outdoors. Malaria Journal 18: 83. https://doi.org/10.1186/s12936-019-2726-x CrossrefGoogle Scholar
Mlacha, Y.P., Chaki, P.P., Muhili, A., Massue, D.J., Tanner, M., Majambere, S., Killen, G.F. and Govella, N.J., 2020. Reduced human-biting preferences of the African malaria vectors Anopheles arabiensis and Anopheles gambiae in an urban context: controlled, competitive host-preference experiments in Tanzania. Malaria Journal 19: 418. https://doi.org/10.1186/s12936-020-03495-z CrossrefGoogle Scholar
Mohamed, A.A.M., Retzke, T., Chakraborty, S.D., Fabian, B., Hansson, B.S., Knaden, M. and Sachse, S., 2019. Odor mixtures of opposing valence unveil inter-glomerular crosstalk in the Drosophila antennal lobe. Nature Communications 10: 1201. https://doi.org/10.1038/s41467-019-09069-1 CrossrefGoogle Scholar
Molaei, G., Andreadis, T.G., Armstrong, P.M. and Diuk-Wasser, M., 2008. Host-feeding patterns of potential mosquito vectors in Connecticut, USA: molecular analysis of bloodmeals from 23 species of Aedes, Anopheles, Culex, Coquillettidia, Psorophora, and Uranotaenia. Journal of Medical Entomology 45: 1143-1151. https://doi.org/10.1093/jmedent/45.6.1143 CrossrefGoogle Scholar
Mukabana, W.R., Mweresa, C.K., Otieno, B., Omusula, P., Smallegange, R.C., Van Loon, J.J. and Takken, W., 2012. A novel synthetic odorant blend for trapping of malaria and other African mosquito species. Journal of Chemical Ecology 38: 235-244. https://doi.org/10.1007/s10886-012-0088-8 CrossrefGoogle Scholar
Mukwaya, L.G., 1977. Genetic control of feeding preferences in the mosquitoes Aedes (Stegomyia) simpsoni and aegypti. Physiological Entomology 2: 133-145. https://doi.org/10.1111/j.1365-3032.1977.tb00091.x CrossrefGoogle Scholar
Mwandawiro, C., Boots, M., Tuno, N., Suwonkerd, W., Tsuda, Y. and Takagi, M., 2000. Heterogeneity in the host preference of Japanese encephalitis vectors in Chiang Mai, northern Thailand. Transactions of the Royal Society of Tropical Medicine and Hygiene 94: 238-242. https://doi.org/10.1016/S0035-9203(00)90303-1 CrossrefGoogle Scholar
Nayar, J.K. and Sauerman Jr, D.M., 1977. The effects of nutrition on survival and fecundity in Florida mosquitoes. Journal of Medical Entomology 14: 167-174. https://doi.org/10.1093/jmedent/14.2.167 CrossrefGoogle Scholar
Neafsey, D.E., Waterhouse, R.M., Abai, M.R., Aganezov, S.S., Alekseyev, M.A., Allen, J.E., Amon, J., Arcà, B., Arensburger, P., Artemov, G., Assour, L.A., Basseri, H., Berlin, A., Birren, B.W., Blandin, S.A., Brockman, A.I., Burkot, T.R., Burt, A., Chan, C.S., Chauve, C., Chiu, J.C., Christensen, M., Costantini, C., Davidson, V.L.M., Deligianni, E., Dottorini, T., Dritsou, V., Gabriel, S.B., Guelbeogo, W.M., Hall, A.B., Han, M.V., Hlaing, T., Hughes, D.S.T., Jenkins, A.M., Jiang, X., Jungreis, I., Kakani, E.G. Kamali, M., Kemppainen, P., Kennedy, R.C., Kirmitzoglou, I.K., Koekemoer, L.L., Laban, N., Langridge, N., Lawniczak, M.K.N., Lirakis, M., Lobo, N.F., Lowy, E., MacCallum, R.M., Mao, C., Maslen, G., Mbogo, C., McCarthy, J., Michel, K., Mitchell, S.N., Moore, W., Murphy, K.A., Naumenko, A.N., Nolan, T., Novoa, E.M., O’Loughlin, S., Oringanje, C., Oshaghi, M.A., Pakpour, N., Papathanos, P.A., Peery, A.N., Povelones, M., Prakash, A., Price, D.P., Rajaraman, A., Reimer, L.J., Rinker, D.C., Rokas, A., Russell, T.L., Sagnon, N., Sharakhova, M.V., Shea, T., Simäo, F.A., Simard, F., Slotman, M.A., Somboon, P., Stegniy, V., Struchiner, C.J., Thomas, G.W.C., Tojo, M., Topalis, P., Tubio, J.M.C., Unger, M.F., Vontas, J., Walton, C., Wilding, C.S., Willis, J.H., Wu, Y., Yan, G., Zdobnov, E.M., Zhou, X., Catteruccia, F., Christophides, G. K., Collins, F.H., Cornman, R.S., Crisanti, A., Donnelly, M.J., Emrich, S.J., Fontaine, M.C., Gelbart, W., Hahn, M.W, Hansen, I.A., Howell, P.I., Kafatos, F.C., Kellis, M., Lawson, D., Louis, C., Luckhart, S., Muskavitch, M.A.T., Ribeiro, J.M., Riehle, M.A., Sharakhov, I.V., Tu, Z., Zwiebel, L.J. and Besansky, N.J., 2015. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347: 6217. https://doi.org/10.1126/science.1258522 CrossrefGoogle Scholar
Nene, V., Wortman, J.R., Lawson, D., Haas, B., Kodira, C., Tu, Z., Loftus, B., Xi, Z., Megy, K., Grabherr, M., Ren, Q., Zdobnov, E.M., Lobo, N.F., Campbell, K.S., Brown, S.E., Bonaldo, M.F., Zhu, J., Sinkins, S.P., Hogenkamp, D.G., Amedeo, P., Arensburger, P., Atkinson, P.W., Bidwell, S., Biedler, J., Birney, E., Bruggner, R.V., Costas, J., Coy, M.R., Crabtree, J., Crawford, M., deBruyn, B., DeCaprio, D., Eiglmeier, K., Eisenstadt, E., El-Dorry, H., Gelbart, W.M., Gomes, S.L., Hammond, M., Hannick, L.I., Hogan, J.R., Holmes, M.H., Jaffe, D., Johnston, J.S., Kennedy, R.C., Koo, G., Kravitz, S., Kriventseva, E.V., Kulp, D., LaButti, K., Lee, E., Li, S., Lovin, D.D., Mao, C., Mauceli, E., Menck, C.F.M., Miller, J.R., Montgomery, P., Mori, A., Nascimento, A.L., Naveira, H.F., Nusbaum, C., O’Leary, S., Orvis, J., Pertea, M., Quesneville, H., Reidenbach, K.R., Rogers, Y., Roth, C.W., Schneider, J.R., Schatz, M., Shumway, M., Stanke, M., Stinson, E.O., Tubio, J.M.C., VanZee, J.P., Verjovski-Almeida, S., Werner, D., White, O., Wyder, S., Zeng, Q., Zhao, Q., Zhao, Y., Hill, C.A., Raikhel, A.S., Soares, M.B., Knudson, D.L., Lee, N.H., Galagan, J., Salzberg, S.L., Paulsen, I.T., Dimopoulos, G., Collins, F.H., Birren, B., Fraser-Liggett, C.M. and Severson, D.W., 2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316: 1718-1723. https://doi.org/10.1126/science.1138878 CrossrefGoogle Scholar
Nyasembe, V.O., Tchouassi, D.P., Pirk, C.W.W., Sole, C.L. and Torto, B., 2018. Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLoS Neglected Tropical Diseases 12: e0006185. https://doi.org/10.1371/journal.pntd.0006185 CrossrefGoogle Scholar
Okumu, F.O., Killeen, G.F., Ogoma, S., Biswaro, L., Renate, C., Mbeyela, E., Titus, E., Munk, C., Ngonyani, H., Takken, W., Mshinda, H., Mukabana, W.R. and Moore, S.J., 2010. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS ONE 5: e8951. https://doi.org/10.1371/journal.pone.0008951 CrossrefGoogle Scholar
Omondi, A.B., Ghaninia, M., Dawit, M., Svensson, T. and Ignell, R., 2019. Age-dependent regulation of host seeking in Anopheles coluzzii. Scientific Reports 9: 9699. https://doi.org/10.1038/s41598-019-46220-w CrossrefGoogle Scholar
Owino, E.A., Sang, R., Sole, C.L., Pirk, C., Mbogo, C. and Torto, B., 2015. An improved odor bait for monitoring populations of Aedes aegypti – vectors of dengue and chikungunya viruses in Kenya. Parasites & Vectors 8: 253. https://doi.org/10.1186/s13071-015-0866-6 CrossrefGoogle Scholar
Pates, H.V., Takken, W., Stuke, K. and Curtis, C.F., 2001. Differential behaviour of Anopheles gambiae sensu stricto (Diptera: Culicidae) to human and cow odours in the laboratory. Bulletin of Entomological Research 91: 289-296. https://doi.org/10.1079/BER200198 CrossrefGoogle Scholar
Peled, N., Ionescu, R., Nol, P., Barash, O., McCollum, M., VerCauteren, K., Koslow, M., Stahl, R., Rhyan, J. and Haick, H., 2012. Detection of volatile organic compounds in cattle naturally infected with Mycobacterium bovis. Sensors and Actuators B: Chemical 171: 588-594. https://doi.org/10.1016/j.snb.2012.05.038 CrossrefGoogle Scholar
Pelosi, P., Iovinella, I., Zhu, J., Wang, G. and Dani, F.R., 2018. Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biological Reviews 93: 184-200. https://doi.org/10.1111/brv.12339 CrossrefGoogle Scholar
Penn, D.J., Oberzaucher, E., Grammer, K., Fischer, G., Soini, H.A., Wiesler, D., Novotny, M.V., Dixon, S.J., Xu, Y. and Brereton, R.G., 2007. Individual and gender fingerprints in human body odour. Journal of the Royal Society Interface 4: 331-340. https://doi.org/10.1098/rsif.2006.0182 CrossrefGoogle Scholar
Pérez-Silva, J.G., Araujo-Voces, M. and Quesada, V., 2018. nVenn: generalized, quasi-proportional Venn and Euler diagrams. Bioinformatics 34: 2322-2324. https://doi.org/10.1093/bioinformatics/bty109 CrossrefGoogle Scholar
Petrarca, V. and Beier, J.C., 1992. Intraspecific chromosomal polymorphism in the Anopheles gambiae complex as a factor affecting malaria transmission in the Kisumu area of Kenya. The American Journal of Tropical Medicine and Hygiene 46: 229-237. https://doi.org/10.4269/ajtmh.1992.46.229 CrossrefGoogle Scholar
Pitts, R.J., Derryberry, S.L., Zhang, Z. and Zwiebel, L.J., 2017. Variant ionotropic receptors in the malaria vector mosquito Anopheles gambiae tuned to amines and carboxylic acids. Scientific Reports 7: 40297. https://doi.org/10.1038/srep40297 CrossrefGoogle Scholar
Pitts, R.J., Ibarra Bouzada, L.M.E. and Guerenstein, P.G., 2022. Comparative morphology of the peripheral olfactory system of disease vector arthropods. Chapter 2. In: Ignell, R., Lazzari, C.R., Lorenzo, M.G. and Hill, S.R. (eds.) Sensory ecology of disease vectors. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 29-70. https://doi.org/10.3920/978-90-8686-932-9_2 Google Scholar
Powell, J.R., Gloria-Soria, A. and Kotsakiozi, P., 2018. Recent history of Aedes aegypti: vector genomics and epidemiology records. BioScience 68: 854-860. https://doi.org/10.1093/biosci/biy119 CrossrefGoogle Scholar
Prüfer, K., Munch, K., Hellmann, I., Akagi, K., Miller, J.R., Walenz, B., Koren, S., Sutton, G., Kodira, C., Winer, R., Knight, J.R., Mullikin, J.C., Meader, S.J., Ponting, C.P., Gerton Lunter, G., Higashino, S., Hobolth, A., Dutheil, J., Karakoç, E., Alkan, C., Sajjadian, S., Catacchio, C.R., Ventura, M., Marques-Bonet, T., Eichler, E.E., André, C., Atencia, R., Mugisha, L., Junhold, J., Patterson, N., Siebauer, M., Good, J.M., Fischer, A., Ptak, S.E., Lachmann, M., Symer, D.E., Mailund, T., Schierup, M.H., Andrés, A.M., Kelso, J. and Pääbo, S., 2012. The bonobo genome compared with the chimpanzee and human genomes. Nature 486: 527-531. https://doi.org/10.1038/nature11128 CrossrefGoogle Scholar
Pyke, G.H., Pulliam, H.R. and Charnov, E.L., 1997. Optimal foraging: a selective review of theory and tests. The Quarterly Review of Biology 52: 2. https://doi.org/10.1086/409852 CrossrefGoogle Scholar
Qiu, Y.T., Smallegange, R.C., Van Loon, J.J.A., Ter Braak, C.J.F. and Takken, W., 2006. Interindividual variation in the attractiveness of human odours to the malaria mosquito Anopheles gambiae s. s. Medical and Veterinary Entomology 20: 280-287. https://doi.org/10.1111/j.1365-2915.2006.00627.x CrossrefGoogle Scholar
Raji, J.I., Melo, N., Castillo, J.S., Gonzalez, S., Saldana, V., Stensmyr, M.C. and DeGenarro, M., 2019. Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway. Current Biology 29: 1253-1262. https://doi.org/10.1016/j.cub.2019.02.045 CrossrefGoogle Scholar
Reegan, A.D., Ceasar, S.A., Paulraj, M.G., Ignacimuthu, S. and Al-Dhabi, N.A., 2016. Current status of genome editing in vector mosquitoes: a review. BioScience Trends 10: 424-432. https://doi.org/10.5582/bst.2016.01180 CrossrefGoogle Scholar
Reeves, L.E., Holderman, C.J., Blosser, E.M., Gillett-Kaufman, J.L., Kawahara, A.Y., Kaufman, P.E. and Burkett-Cadena, N.D., 2018. Identification of Uranotaenia sapphirina as a specialist of annelids broadens known mosquito host use patterns. Communications Biology 1: 92. https://doi.org/10.1038/s42003-018-0096-5 CrossrefGoogle Scholar
Reidenbach, K.R., Cook, S., Bertone, M.A., Harbach, R.E., Wiegmann, B.M. and Besansky, N.J., 2009. Phylogenetic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology. BMC Evolutionary Biology 9: 298. https://doi.org/10.1186/1471-2148-9-298 CrossrefGoogle Scholar
Riabinina, O., Task, D., Marr, E., Lin, C.C., Alford, R., O’Brochta, D.A. and Potter, C.J., 2016. Organization of olfactory centres in the malaria mosquito Anopheles gambiae. Nature Communications 7: 13010. https://doi.org/10.1038/ncomms13010 CrossrefGoogle Scholar
Rinker, D.C., Zhou, X., Pitts, R.J., Consortium, A., Rokas, A. and Zwiebel, L.J., 2013. Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae. BMC Genomics 14: 749. https://doi.org/10.1186/1471-2164-14-749 CrossrefGoogle Scholar
Robinson, A., Busula, A.O., Voets, M.A., Beshir, K.B., Caulfield, J.C., Powers, S.J., Verhulst, N.O., Winskill, P., Muwanguzi, J., Birkett, M.A. and Smallegange, R.C., 2018. Plasmodium-associated changes in human odor attract mosquitoes. Proceedings of the National Academy of Sciences of the USA 115: E4209-E4218. https://doi.org/10.1073/pnas.1721610115 CrossrefGoogle Scholar
Rose, N.H., Sylla, M., Badolo, A., Lutomiah, J., Ayala, D., Aribodor, O.B., Ibe, N., Akorli, J., Otoo, S., Mutebi, J., Kriete, A.L., Ewing, E.G. Sang, R., Gloria-Soria, A., Powell, J.R., Baker, R.E., White, B.J., Crawford, J.E. and McBride, C.S., 2020. Climate and urbanization drive mosquito preference for humans. Current Biology 30: 3570-3579. https://doi.org/10.1016/j.cub.2020.06.092 CrossrefGoogle Scholar
Rudolfs, W., 1922. Chemotropism of mosquitoes. New Jersey Agricultural Experiment Stations 367: 1-23. Google Scholar
Ruel, D.M. and Bohbot, J.D., 2022. The molecular and neural determinants of olfactory behaviour in mosquitoes. Chapter 3. In: Ignell, R., Lazzari, C.R., Lorenzo, M.G. and Hill, S.R. (eds.) Sensory ecology of disease vectors. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 71-115. https://doi.org/10.3920/978-90-8686-932-9_3 Google Scholar
Seenivasagan, T., Guha, L. and Parashar, B.D., 2014. Olfaction in Asian tiger mosquito Aedes albopictus: flight orientation response to certain saturated carboxylic acids in human skin emanations. Parasitology Research 113: 1927-1932. https://doi.org/10.1007/s00436-014-3840-x CrossrefGoogle Scholar
Smallegange, R.C., Qiu, Y.T., Bukovinszkiné-Kiss, G., Van Loon, J.J. and Takken, W., 2009. The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the malaria mosquito Anopheles gambiae sensu stricto. Journal of Chemical Ecology 35: 933-943. https://doi.org/10.1007/s10886-009-9668-7 CrossrefGoogle Scholar
Smallegange, R.C., Qiu, Y.T., Van Loon, J.J.A. and Takken, W., 2005. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae). Chemical Senses 30: 145-152. https://doi.org/10.1093/chemse/bji010 CrossrefGoogle Scholar
Sorrells, T.R., Pandey, A., Rosas-Villegas, A. and Vosshall, L.B., 2022. A persistent behavioral state enables sustained predation of humans by mosquitoes. eLife 11: e76663. https://doi.org/10.7554/eLife.76663 CrossrefGoogle Scholar
Spanoudis, C.G., Andreadis, S.S., Bray, D.P., Savopoulou-Soultani, M. and Ignell, R. 2020. Behavioural response of the house mosquitoes Culex quinquefasciatus and Culex pipiens molestus to avian odours and its reliance on carbon dioxide. Medical and Veterinary Entomology 34: 129-137. https://doi.org/10.1111/mve.12429 CrossrefGoogle Scholar
Steib, B.M., Geier, M. and Boeckh, J., 2001. The effect of lactic acid on odour-related host preference of yellow fever mosquitoes. Chemical Senses 26: 523-528. https://doi.org/10.1093/chemse/26.5.523 CrossrefGoogle Scholar
Stengl, M., Hatt, H. and Breer, H., 1992. Peripheral processes in insect olfaction. Annual Review of Physiology 54: 665-681. CrossrefGoogle Scholar
Strutz, A., Soelter, J., Baschwitz, A., Farhan, A., Grabe, V., Rybak, J., Knaden, M., Schmuker, M., Hansson, B.S. and Sachse, S., 2014. Decoding odor quality and intensity in the Drosophila brain. eLife 3: e04147. https://doi.org/10.7554/eLife.04147.001 CrossrefGoogle Scholar
Suh, E., Bohbot, J.D. and Zwiebel, L.J., 2014. Peripheral olfactory signaling in insects. Current Opinion in Insect Science 6: 86-92. https://doi.org/10.1016/j.cois.2014.10.006 CrossrefGoogle Scholar
Syed, Z. and Leal, W.S., 2009. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proceedings of the National Academy of Sciences of the USA 106: 18803-18808. https://doi.org/10.1073/pnas.0906932106 CrossrefGoogle Scholar
Takken, W. and Knols, B.G.J., 1999. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annual Review of Entomology 44: 131-157. https://doi.org/10.1146/annurev.ento.44.1.131 CrossrefGoogle Scholar
Takken, W. and Verhulst, N.O., 2013. Host preferences of blood-feeding mosquitoes. Annual Review of Entomology 58: 433-453. https://doi.org/10.1146/annurev-ento-120811-153618 CrossrefGoogle Scholar
Tambwe, M.M., Saddler, A., Kibondo, U.A., Mashauri, R., Kreppel, K.S., Govella, N.J. and Moore, S.J., 2021. Comparison between the human landing catch (HLC), an exposure-free mosquito-electrocuting trap (MET) and a BG-Sentinel trap (BGS) for evaluation of transfluthrin emanator against Aedes aegypti using choice and no-choice tests in a semi-field system. Parasites & Vectors in press. https://doi.org/10.21203/rs.3.rs-332021/v1 CrossrefGoogle Scholar
Tchouassi, D.P., Sang, R., Sole, C.L., Bastos, A.D.S., Teal, P.E.A., Borgemeister, C. and Torto, B., 2013. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for Rift Valley fever virus. PLoS Neglected Tropical Diseases 7: e2007. https://doi.org/10.1371/journal.pntd.0002007 CrossrefGoogle Scholar
Tchouassi, D.P., Wanjiku, C. and Torto, B., 2022. Host-derived attractants for surveillance and control of mosquitoes. Chapter 33. In: Ignell, R., Lazzari, C.R., Lorenzo, M.G. and Hill, S.R. (eds.) Sensory ecology of disease vectors. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 851-877. https://doi.org/10.3920/978-90-8686-932-9_33 Google Scholar
Tempelis, C.H., 1975. Host-feeding patterns of mosquitoes, with a review of advances in analysis of blood meals by serology. Journal of Medical Entomology 11: 635-653. https://doi.org/10.1093/jmedent/11.6.635 CrossrefGoogle Scholar
Thiemann, T.C., Brault, A.C., Ernest, H.B. and Reisen, W.K., 2012. Development of a high-throughput microsphere-based molecular assay to identify 15 common bloodmeal hosts of Culex mosquitoes. Molecular Ecology Resources 12: 238-246. https://doi.org/10.1111/j.1755-0998.2011.03093.x CrossrefGoogle Scholar
Thiemann, T.C., Wheeler, S.S., Barker, C.M. and Reisen, W.K., 2011. Mosquito host selection varies seasonally with host availability and mosquito density. PLoS Neglected Tropical Diseases 5: e1452. https://doi.org/10.1371/journal.pntd.0001452 CrossrefGoogle Scholar
Tishkoff, S.A., Varkonyi, R., Cahinhinan, N., Abbes, S., Argyropoulos, G., Destro-Bisol, G., Drousiotou, A., Dangerfield, B., Lefranc, G., Loiselet, J., Piro, A., Stoneking, M., Tagarelli, A., Tagarelli, G., Touma, E.H., Williams, S.M. and Clark, A.G., 2001. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293: 455-462. https://doi.org/10.1126/science.1061573 CrossrefGoogle Scholar
Torr, S.J., della Torre, A., Calzetta, M., Costantini, C. and Vale, G.A., 2008. Towards a fuller understanding of mosquito behaviour: use of electrocuting grids to compare the odour-orientated responses of Anopheles arabiensis and An. quadriannulatus in the field. Medical and Veterinary Entomology 22: 93-108. https://doi.org/10.1111/j.1365-2915.2008.00723.x CrossrefGoogle Scholar
Van den Broek, I.V.F. and Den Otter, C.J., 1999. Olfactory sensitivities of mosquitoes with different host preferences (Anopheles gambiae s.s., An. arabiensis, An. quadriannulatus, An. m. atroparvus) to synthetic host odours. Journal of Insect Physiology 45: 1001-1010. https://doi.org/10.1016/S0022-1910(99)00081-5 CrossrefGoogle Scholar
Vantaux, A., Lefèvre, T., Dabiré, K.R. and Cohuet, A., 2014. Individual experience affects host choice in malaria vector mosquitoes. Parasites & Vectors 7: 249. https://doi.org/10.1186/1756-3305-7-249 CrossrefGoogle Scholar
Verhulst, N.O., Qiu, Y.T., Beijleveld, H., Maliepaard, C., Knights, D., Schulz, S., Berg-Lyons, D., Lauber, C.L., Verduijn, W., Haasnoot, G.W., Mumm, R., Bouwmeester, H.J., Claas, F.H.J., Dicke, M., Van Loon, J.J.A., Takken, W., Knight, R. and Smallegange, R.C., 2011. Composition of human skin microbiota affects attractiveness to malaria mosquitoes. PLoS ONE 6. https://doi.org/10.1371/journal.pone.0028991 CrossrefGoogle Scholar
Verhulst, N.O., Umanets, A., Weldegergis, B.T., Maas, J.P.A., Visser, T.M., Dicke, M., Smidt, H. and Takken, W., 2018. Do apes smell like humans? The role of skin bacteria and volatiles of primates in mosquito host selection. Journal of Experimental Biology 221: jeb185959. https://doi.org/10.1242/jeb.185959 CrossrefGoogle Scholar
Vinauger, C., Lahondère, C., Cohuet, A., Lazzari, C.R. and Riffell, J.A., 2016. Learning and memory in disease vector insects. Trends in Parasitology 32: 761-771. https://doi.org/10.1016/j.pt.2016.06.003 CrossrefGoogle Scholar
Vinauger, C., Lahondère, C., Wolff, G.H., Locke, L.T., Liaw, J.E., Parrish, J.Z., Akbari, O.S., Dickinson, M.H. and Riffell, J.A., 2018. Modulation of host learning in Aedes aegypti mosquitoes. Current Biology 28: 333-344. https://doi.org/10.1016/j.cub.2017.12.015 CrossrefGoogle Scholar
Vosshall, L.B., Amrein, H., Morozov, P.S., Rzhetsky, A. and Axel, R., 1999. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96: 725-736. https://doi.org/10.1016/S0092-8674(00)80582-6 CrossrefGoogle Scholar
Wang, G., Carey, A.F., Carlson, J.R. and Zwiebel, L.J., 2010. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proceedings of the National Academy of Sciences of the USA 107: 4418-4423. https://doi.org/10.1073/pnas.0913392107 CrossrefGoogle Scholar
Wheelwright, M., Whittle, C.R. and Riabinina, O., 2021. Olfactory systems across mosquito species. Cell and Tissue Research 383: 75-90. https://doi.org/10.1007/s00441-020-03407-2 CrossrefGoogle Scholar
White, B.J., Collins, F.H. and Besansky, N.J., 2011. Evolution of Anopheles gambiae in relation to humans and malaria. Annual Review of Ecology, Evolution, and Systematics 42: 111-132. https://doi.org/10.1146/annurev-ecolsys-102710-145028 CrossrefGoogle Scholar
Wisthaler, A. and Weschler, C.J., 2010. Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. Proceedings of the National Academy of Sciences of the USA 107: 6568-6575. https://doi.org/10.1073/pnas.0904498106 CrossrefGoogle Scholar
Woke, P.A., 1937. Comparative effects of the blood of different species of vertebrates on egg-production of Aedes aegypti Linn. American Journal of Tropical Medicine 17: 729-745. CrossrefGoogle Scholar
Wolff, G.H. and Riffell, J.A., 2018. Olfaction, experience and neural mechanisms underlying mosquito host preference. Journal of Experimental Biology 221: jeb157131. https://doi.org/10.1242/jeb.157131 CrossrefGoogle Scholar
Wondwosen, B., Birgersson, G., Seyoum, E., Tekie, H., Torto, B., Fillinger, U., Hill, S.R. and Ignell, R., 2016. Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis. Scientific Reports 6: 37930. https://doi.org/10.1038/srep37930 CrossrefGoogle Scholar
Wondwosen, B., Hill, S.R., Birgersson, G., Seyoum, E., Tekie, H. and Ignell, R., 2017. A(maize)ing attraction: gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours. Malaria Journal 16: 39. https://doi.org/10.1186/s12936-016-1656-0 CrossrefGoogle Scholar
World Health Organization (WHO), 2020. Fact sheet on vector-borne diseases. Available at: https://www.who.int/en/news-room/fact-sheets/detail/vector-borne-diseases Google Scholar
Xu, P., Zhu, F., Buss, G.K. and Leal, W.S., 2015. 1-Octen-3-ol – the attractant that repels. F1000Research 4: 156. https://doi.org/10.12688/f1000research.6646.1 CrossrefGoogle Scholar
Ye, Z., Liu, F., Sun, H., Ferguson, S.T., Baker, A., Ochieng, S.A. and Zwiebel, L.J., 2022. Discrete roles of Ir76b ionotropic coreceptor impact olfaction, blood feeding, and mating in the malaria vector mosquito Anopheles coluzzii. Proceedings of the National Academy of Sciences 119: e2112385119. https://doi.org/10.1073/pnas.2112385119 CrossrefGoogle Scholar
Zhao, Z. and McBride, C.S., 2020. Evolution of olfactory circuits in insects. Journal of Comparative Physiology A 206: 353-367. https://doi.org/10.1007/s00359-020-01399-6 CrossrefGoogle Scholar
Zhao, Z., Tian, D. and McBride, C.S., 2021. Development of a pan-neuronal genetic driver in Aedes aegypti mosquitoes. Cell Reports Methods 1: 100042. https://doi.org/10.1016/j.crmeth.2021.100042 CrossrefGoogle Scholar
Zhao, Z., Zung, J.L., Hinze, A., Kriete, A.L., Iqbal, A., Younger, M.A., Matthews, B.J., Merhof, D., Thiberge, S., Ignell, R., Strauch, M. and McBride, C.S., 2022. Mosquito brains encode unique features of human odour to drive host seeking and preference. Nature 605: 706-712. https://doi.org/10.1038/s41586-022-04675-4 CrossrefGoogle Scholar
Zimmerman, R.H., Galardo, A.K.R., Lounibos, L.P., Arruda, M. and Wirtz, R., 2006. Bloodmeal hosts of Anopheles species (Diptera: Culicidae) in a malaria-endemic area of the Brazilian Amazon. Journal of Medical Entomology 43: 947-956. https://doi.org/10.1093/jmedent/43.5.947 CrossrefGoogle Scholar

Related titles:

New titles

Institutional Offers

For institutional orders, please contact [email protected].

Purchase Options