Cover Image

The gestating and lactating sow


Books

Published: 

eISBN: 978-90-8686-803-2 | ISBN: 978-90-8686-253-5

Book Type: Edited Collection
Algers, B. and Jensen, P., 1991. Teat stimulation and milk production during early lactation in sows: effects of continuous noise. Canadian Journal of Animal Science 71: 51-60.
CrossrefGoogle Scholar
Algers, B. and Uvnäs-Moberg, K., 2007. Maternal behavior in pigs. Hormones and Behaviour 52: 78-85.
CrossrefGoogle Scholar
Atwood, C., Toussaint, J.K. and Hartmann, P.E., 1995. Assessment of mammary gland metabolism in the sow. II. Cellular metabolites in the mammary secretion and plasma during lactogenesis II. Journal of Dairy Research 62: 207-220.
CrossrefGoogle Scholar
Auldist, D.E. and King, R.H., 1995. Piglets’ role in determining milk production in the sow. In: Hennessy, D.P. and Cranwell, P.D. (eds.) Manipulating pig production V., Australasian Pig Science Association, Werribee, Australia, pp. 114-126.
Google Scholar
Auldist, D.E., Morrish, L., Eason, P. and King, R.H., 1998. The influence of litter size on milk production of sows. Animal Science 67: 333-337.
CrossrefGoogle Scholar
Baxter, E.M. and Edwards, S.A., 2013. Environmental factors behind piglet survival. In: Rodriguez-Martinez, H., Soede, N.M. and Flowers, W. (eds.) Control of pig reproduction IX. Nottingham University press, Society for Reproduction and Fertility, Nottingham, UK, pp. 129-143.
Google Scholar
Beyer, M., Jentsch, W., Kuhla, S., Wittenburg, H. Kreienbring, F., Scholze, H., Rudolph, P. E. and Metges, C.C., 2007. Effects of dietary energy intake during gestation and lactation on milk yield and composition of first, second and fourth parity sows. Archives in Animal Nutrition 61: 452-468.
CrossrefGoogle Scholar
Cabell, S.B. and Esbenshade, K.L., 1990. Effect of feeding thyrotropin-releasing hormone to lactating sows. Journal of Animal Science 68: 4292-4302.
CrossrefGoogle Scholar
Cabrera, R.A., Boyd, R.D., Jungst, S.B., Wilson, E.R., Johnston, M.E., Vignes, J.L. and Odle, J., 2010. Impact of lactation length and piglet weaning weight on long-term growth and viability of progeny. Journal of Animal Science 88: 2265-2276.
CrossrefGoogle Scholar
Campbell, R.G. and Dunkin, A.C., 1982. The effect of birth weight on the esplusketimated milk intake, growth and body composition of sow-reared piglets. Animal Production 35: 193-197.
CrossrefGoogle Scholar
Caugant, A., Paboeuf, F., Quinio, P.Y. and Pellois, H., 2000. La perte des tétines des truies en cours de carrière. Rapport EDE-CA de Bretagne, Chambre d’Agriculture Bretagne, France.
Google Scholar
Chalkias, H., Rydhmer, L. and Lundeheim, N., 2013. Genetic analysis of functional and nonfunctional teats in a population of Yorkshire pigs. Livestock Science 152: 127-134.
CrossrefGoogle Scholar
Cromwell, G.L., Stahly, T.S., Edgerton, L.A., Monegue, H.J., Burnell, T.W., Schenck, B.B. and Schricker, B.R., 1992. Recombinant porcine somatotropin for sows during late gestation and throughout lactation. Journal of Animal Science 70: 1404-1416.
CrossrefGoogle Scholar
Cronin, G.M., Leeson, E., Cronin, J.G. and Barnett, J.L., 2001. The effect of broadcasting sow suckling grunts in the lactation shed on piglet growth. Asian-Australasian Journal of Animal Science 14: 1019-1023.
CrossrefGoogle Scholar
Csapó, J., Martin, T.G., Csapó-Kiss, Z.S. and Házas, Z., 1996. Protein, fats, vitamin and mineral concentrations in porcine colostrum and milk from parturition to 60 days. International Dairy Journal 6: 881-902.
CrossrefGoogle Scholar
Danielsen, V., 2003. Feeding strategies for lactating sows. Grøn Viden, Husdyrbrug 33: 1-8. [in Danish]
Google Scholar
De Oliveira Junior, G.M., Ferreira, A.S., Oliveira, R.F.M., Silva, B.A.N., De Figueiredo, E.M. and Santos, M., 2011. Behaviour and performance of lactating sows housed in different types of farrowing rooms during summer. Livestock Science 141: 194-201.
CrossrefGoogle Scholar
De Passillé, A.M.B. and Rushen, J., 1989. Using early suckling behavior and weight gain to identify piglets at risk. Canadian Journal of Animal Science 69: 535-544.
CrossrefGoogle Scholar
De Passillé, A.M.B., Rushen, J., Foxcroft, G.R., Aherne, F. and Schaefer, A., 1993. Performance of young pigs: relationship with periparturient progesterone, prolactin and insulin of sows. Journal of Animal Science 71: 179-184.
CrossrefGoogle Scholar
Decaluwé, R., Maes, D., Declerck, I., Cools, A., Wuyts, B., De Smet, S. and Janssens, G.P.J., 2013. Changes in back fat thickness during late gestation predict colostrum yield in sows. Animal 7: 1999-2007.
CrossrefGoogle Scholar
Devillers, N., Farmer, C., Le Dividich, J. and Prunier, A., 2007. Variability of colostrum yield and colostrum intake in pigs. Animal 1: 1033-1041.
CrossrefGoogle Scholar
Devillers, N., Van Milgen, J., Prunier, A. and Le Dividich, J., 2004. Estimation of colostrum intake in the neonatal pig. Animal Science 78: 305-313.
CrossrefGoogle Scholar
Dourmad, J.Y., Quiniou, N., Heugebaert, S., Paboeuf, F. and Ngo, T.T., 2012. Effect of parity and number of suckling piglets on milk production of sows. Proceedings of the EAAP-63rd annual meeting. Bratislava, Slovakia, 44 pp. Google Scholar
Dubreuil, P., Pelletier, G., Petitclerc, D., Lapierre, H., Couture, Y., Gaudreau, P., Morisset, J. and Brazeau, P., 1990. Influence of growth hormone-releasing factor and (or) thyrotropin-releasing factor on sows blood components, milk composition and piglet performance. Canadian Journal of Animal Science 70: 821-832.
CrossrefGoogle Scholar
Dusza, L., Sobczak, J., Jana, B., Murdza, A. and Bluj, W., 1991. Zastosowanie biolactinu-2 (pczyszczona prolaktyna swini) do stymulacji lactacji u loch. Medycyna Weter 47: 418-421.
Google Scholar
Edwards, S.A., 2002. Perinatal mortality in the pig: environmental or physiological solutions? Livestock Production Science 78: 3-12.
CrossrefGoogle Scholar
Elsley, F.W.H., 1971. Nutrition and lactation in the sow. In: Falconer, I.R. (ed.) Lactation. Butterworths, London, UK, pp: 393-411
Google Scholar
Farmer, C. and Hurley, W.L., 2015. Mammary development. Chapter 4. In: Farmer, C. (ed.) The gestating and lactating sow. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 73-94.
Wageningen Academic PublishersGoogle Scholar
Farmer, C., Palin, M.F., Sorensen, M.T. and Robert, S., 2001. Lactational performance, nursing and maternal behavior of upton-meishan and large white sows. Canadian Journal of Animal Science 81: 487-493.
CrossrefGoogle Scholar
Farmer, C., Palin, M.F., Theil, P.K., Sorensen, M.T. and Devillers, N., 2012. Milk production in sows from a teat in second parity is influenced by whether it was suckled in first parity. Journal of Animal Science 90: 3743-3751.
CrossrefGoogle Scholar
Farmer, C., Petitclerc, D., Pelletier, G. and Brazeau, P., 1992. Lactation performance of sows injected with growth hormone-releasing factor during gestation and (or) lactation. Journal of Animal Science 70: 2636-2642.
CrossrefGoogle Scholar
Farmer, C. and Prunier, A., 2002. High ambient temperatures: how they affect sow lactation performance. Pig News and Information 23: 95N-102N.
Google Scholar
Farmer, C., Robert, S. and Rushen, J., 1998. Bromocriptine given orally to periparturient or lactating sows inhibits milk production. Journal of Animal Science 76: 750-757.
CrossrefGoogle Scholar
Farmer, C., Sorensen, M.T., Robert, S. and Petitclerc, D., 1999. Administering exogenous porcine prolactin to lactating sows: milk yield, mammary gland composition, and endocrine and behavioral responses. Journal of Animal Science 77: 1851-1859.
CrossrefGoogle Scholar
Fisette, K., Laforest, J.P., Robert, S. and Farmer, C., 2004. Use of recorded nursing grunts during lactation in two breeds of sows. I. Effects on nursing behaviour and litter performance. Canadian Journal of Animal Science 84: 573-579.
CrossrefGoogle Scholar
Flummer, C. and Theil, P.K., 2012. Effect of β-hydroxy β-methyl butyrate supplementation of sows in late gestation and lactation on sow production of colostrum and milk and piglet performance. Journal of Animal Science 90(4): 372-374.
CrossrefGoogle Scholar
Foisnet, A., Farmer, C., David, C. and Quesnel, H., 2010. Relationships between colostrum production by primiparous sows and sow physiology around parturition. Journal of Animal Science 88: 1672-1683.
CrossrefGoogle Scholar
Fraser, D., 1980. A review of the behavioural mechanism of milk ejection of the domestic pig. Applied Animal Ethology 6: 247-255.
CrossrefGoogle Scholar
Gooneratne, A.D. and Thacker, P.A., 1990. Influence of an extended photoperiod on sow and litter performance. Livestock Production Science 24: 83-88.
CrossrefGoogle Scholar
Greenberg, L.G. and Mahone, J.P., 1982. Failure of a 16 h L:8 h D or an 8 h L:16 h D photoperiod to influence lactation or reproductive efficiency in sows. Canadian Journal of Animal Science 62: 141-145.
CrossrefGoogle Scholar
Grun, D., Reiner, G. and Dzapo, V., 1993. Investigations on breed differences in milk yield of swine. Part 1. Methodology of mechanical milking and milk yield. Reproduction in Domestic Animals 28: 14-21.
CrossrefGoogle Scholar
Hansen, A.V., Lauridsen, C., Sørensen, M.T., Bach Knudsen, K.E. and Theil, P.K., 2012a. Effects of nutrient supply, plasma metabolites and nutritional status of sows during transition on performance in the following lactation. Journal of Animal Science 90: 466-480.
CrossrefGoogle Scholar
Hansen, A.V., Strathe, A.B., Kebreab, E., France, J. and Theil, P.K., 2012b. Predicting milk yield and composition in lactating sows: a Bayesian approach. Journal of Animal Science 90: 2285-2298.
CrossrefGoogle Scholar
Harkins, M., Boyd, R.D. and Bauman, D.E., 1989. Effects of recombinant porcine somatotropin on lactational performance and metabolite patterns in sows and growth of nursing pigs. Journal of Animal Science 67: 1997-2008.
CrossrefGoogle Scholar
Harrell, R.J., Thomas, M.J. and Boyd, R.D., 1993. Limitations of sow milk yield on baby pig growth. In: Cornell University (ed.) Proceedings of the Cornell Nutrition Conference for Feed Manufacturers. October 19-21, 1993. Rochester, NY, USA, pp. 156-164. Google Scholar
Head, R.H. and Williams, I.H., 1991. Mammogenesis is influenced by pregnancy nutrition. In: Batterham, E.S. (ed.) Manipulating pig production III. Australasian Pig Science Association, Atwood, Australia, 33 pp.
Google Scholar
Herpin, P., Louveau, I., Damon, M. and Le Dividich, J., 2005. Environmental and hormonal regulation of energy metabolism in early development of the pig. In: Burrin, D.G. and Mersmann, H. (eds) Biology of metabolism in growing animals. Elsevier Limited, Amsterdam, the Netherlands, pp. 353-374.
Google Scholar
Jensen, P., Stangel, G. and Algers, B., 1991. Nursing and sucking behaviour of semi-naturally kept pigs during the first 10 days post partum. Applied Animal Behavior Science 31: 195-209.
CrossrefGoogle Scholar
Kim, S.W., Hurley, W.L., Wu, G. and Ji, F., 2009. Ideal amino acid balance for sows during gestation and lactation. Journal of Animal Science 87: E123-E132.
CrossrefGoogle Scholar
King, R.H. and Dunkin, A.C., 1986. The effect of nutrition on the reproductive performance of first-litter sows. 3. The response to graded increases in food intake during lactation. Animal Production 42: 119-126.
CrossrefGoogle Scholar
King, R.H. and Eason, P.J., 1998. The effect of bodyweight of sows on the response to dietary lysine during lactation. Journal of Animal Science 76(1): 162.
Google Scholar
King, R.H., Mullan, B.P., Dunshea, F.R. and Dove, H., 1997. The influence of piglet body weight on milk production of sows. Livestock Production Science 47: 169-174.
CrossrefGoogle Scholar
Klobasa, F., Werhahn, E. and Butler, J.E., 1987. Composition of sow milk during lactation. Journal of Animal Science 64: 1458-1466.
CrossrefGoogle Scholar
Krogh, U., Flummer, C., Jensen, S.K. and Theil, P.K., 2012. Colostrum and milk production of sows is affected by dietary conjugated linoleic acid. Journal of Animal Science 90: 366-368.
CrossrefGoogle Scholar
Kusina, J., Pettigrew, J.E., Sower, A.F., White, M.E., Crooker, B.A. and Hathaway, M.R., 1999. Effect of protein intake during gestation and lactation in the lactational performance of primiparous sows. Journal of Animal Science 77: 931-941.
CrossrefGoogle Scholar
Lauridsen, C. and Danielsen, V., 2004. Lactational dietary fat levels and sources influence milk composition and performance of sows and their progeny. Livestock Production Science 91: 95-105.
CrossrefGoogle Scholar
Le Dividich, J., Rooke, J.A. and Herpin, P., 2005. Review: nutritional and immunological importance of colostrum for the newborn pig. Journal of Agricultural Science 143: 469-485.
CrossrefGoogle Scholar
Lewis, N.J. and Hurnik, F.J., 1985. The development of nursing behaviour in swine. Applied Animal Behavior Science 14: 225-232.
CrossrefGoogle Scholar
Loisel, F., 2014. Variabilité de la production de colostrum par la truie: rôle de la prolactine et de la progestérone et influence des fibres alimentaires. Ph.D. thesis. Agrocampus Ouest, France, 193 pp. Google Scholar
Loisel, F., Farmer, C., Ramaekers, P. and Quesnel, H., 2013. Effects of high fiber intake during late pregnancy on sow physiology, colostrum production and piglet performance. Journal of Animal Science 91: 5269-5279.
CrossrefGoogle Scholar
Loisel, F., Farmer, C., Ramaekers, P. and Quesnel, H., 2014. Colostrum yield and piglet growth during lactation are related to gilt metabolic and hepatic status prepartum. Journal of Animal Science 92: 2931-2941.
CrossrefGoogle Scholar
Mabry, J.W., Cunningham, F.L., Kraeling, R.R. and Rampacek, G.B., 1982. The effect of artificially extended photoperiod during lactation on maternal performance of the sow. Journal of Animal Science 54: 918-921.
CrossrefGoogle Scholar
Miller, Y.J., Collins, A.M., Smits, R.J., Thompson, P.C. and Holyoake, P.K., 2012. Providing supplemental milk to piglets preweaning improves the growth but not survival of gilt progeny compared with sow progeny. Journal of Animal Science 90: 5078-5085.
CrossrefGoogle Scholar
Noble, M.S., Rodriguez-Zas, S., Cook, J.B., Bleck, G.T., Hurley, W.L. and Wheeler, M.B., 2002. Lactational performance of first-parity transgenic gilts expressing bovine alpha-lactalbumin in their milk. Journal of Animal Science 80: 1090-1096.
CrossrefGoogle Scholar
Noblet, J. and Etienne, M., 1987. Body composition, metabolic rate and utilization of milk nutrients in suckling piglets. Reproduction Nutrition Development 27: 829-839.
CrossrefGoogle Scholar
Paulicks, B.R., Ott, H. and Roth-Maier, D.A., 2003. Performance of lactating sows in response to the dietary valine supply. Journal of Animal Physiology and Animal Nutrition 87: 389-396.
CrossrefGoogle Scholar
Peaker, M. and Wilde, C.J., 1987. Milk secretion: autocrine control. News in Physiological Science 2: 124-126.
Google Scholar
Pedersen, M.L., Moustsen, V.A., Nielsen, M.B.F. and Kristensen, A.R., 2011. Improved udder access prolongs duration of milk letdown and increases piglet weigh gains. Livestock Science 140: 253-261.
CrossrefGoogle Scholar
Puppe, B. and Tuchscherer, A., 2000. The development of suckling frequency in pigs from birth to weaning of their piglets: a sociobiological approach. Animal Science 71: 273-279.
CrossrefGoogle Scholar
Quesnel, H., 2009. Nutritional and lactational effects on follicular development in the pig. In: Rodriguez-Martinez, H., Vallet, J.L. and Ziecik, A.J. (eds.) Control of pig reproduction VIII. Nottingham University Press, Nottingham, UK, pp. 121-134.
Google Scholar
Quesnel, H., 2011. Colostrum production by sows: variability of colostrum yield and immunoglobulin G concentrations. Animal 5: 1546-1553.
CrossrefGoogle Scholar
Quesnel, H., Meunier-Salaün, M.C., Hamard, A., Guillemet, R., Etienne, M., Farmer, C., Dourmad, J.Y. and Père, M.C., 2009. Dietary fiber for pregnant sows: Influence on sow physiology and performance during lactation. Journal of Animal Science 87: 532-543.
CrossrefGoogle Scholar
Quesnel, H., Ramaekers, P., Van Hees, H. and Farmer, C., 2013. Short communication: relations between peripartum concentrations of prolactin and progesterone in sows and piglet growth in early lactation. Canadian Journal of Animal Science 93: 109-112.
CrossrefGoogle Scholar
Ramanau, A., Kluge, H., Spilke, J. and Eder, K., 2004. Supplementation of sows with L-carnithine during pregnancy and lactation improves growth of the piglets during the suckling period through increased milk production. Journal of Nutrition 134: 86-92.
CrossrefGoogle Scholar
Rooke, J.A. and Bland, I.M., 2002. The acquisition of passive immunity in the new-born piglet. Livestock Production Science 78: 13-23.
CrossrefGoogle Scholar
Salmon, H., Berri, M., Gerdts, V. and Meurens, F., 2009. Humoral and cellular factors of maternal immunity in swine. Developmental and Comparative Immunology 33: 384-393.
CrossrefGoogle Scholar
Sauber, T.E. and Stahly, T.S., 1996. Impact of dietary amino acid regimen on milk nutrient yield by sows differing in genetic capacity for lean tissue growth. Journal of Animal Science 74(1): 174.
Google Scholar
Seerley, R.W. and Poole, D.R., 1974. Effect of prolonged fasting on carcass composition and blood fatty acids and glucose of neonatal swine. Journal of Nutrition 104: 210-217.
CrossrefGoogle Scholar
Soltwedel, K.T., Easter, R.A. and Pettigrew, J.E., 2006. Evaluation of the order of limitation of lysine, threonine, and valine, as determined by plasma urea nitrogen, in corn-soybean meal diets of lactating sows with high body weight loss. Journal of Animal Science 84: 1734-1741.
CrossrefGoogle Scholar
Speer, V.C. and Cox, D.F., 1984. Estimating milk yield. Journal of Animal Science 59: 1282-1285.
Google Scholar
Spinka, M., Illmann, G., Algers, B. and Stetkova, Z., 1997. The role of nursing frequency in milk production in domestic pigs. Journal of Animal Science 75: 1223-1228.
CrossrefGoogle Scholar
Stone, C.C., Brown, M.S. and Waring, G.H., 1974. An ethological means to improve swine production. Journal of Animal Science 39: 137.
Google Scholar
Taverne, M., Bevers, M. and Bradshaw, J.M.C., 1982. Plasma concentrations of prolactin, progesterone, relaxin and oestradiol-17β in sows treated with progesterone, bromocriptine or indomethacin during late pregnancy. Journal of Reproduction and Fertility 65: 85-96.
CrossrefGoogle Scholar
Theil, P.K., Cordero, G., Henckel, P., Puggaard, L., Oksbjerg, N. and Sørensen, M.T., 2011. Effects of gestation and transition diets, piglet birth weight, and fasting time on depletion of glycogen pools in liver and 3 muscles of newborn piglets. Journal of Animal Science 89: 1805-1816.
CrossrefGoogle Scholar
Theil, P.K., Flummer, C., Hurley, W.L., Kristensen, N.B., Labouriau, R.L. and Sørensen, M.T., 2014a. Mechanistic model to predict colostrum intake based on deuterium oxide dilution technique data and impact of gestation and lactation diets on piglet intake and sow yield of colostrum. Journal of Animal Science, in press. DOI: http://dx.doi.org/10.2527/jas2014-7841.
Google Scholar
Theil, P.K., Jørgensen, H. and Jakobsen, K. 2004. Energy and protein metabolism in lactating sows fed two levels of dietary fat. Livestock Production Science 89: 265-276.
CrossrefGoogle Scholar
Theil, P.K., Jørgensen, H. and Jakobsen, K., 2002. Energy and protein metabolism in pregnant sows fed two levels of dietary protein. Journal of Animal Physiology and Animal Nutrition 86: 399-413.
CrossrefGoogle Scholar
Theil, P.K., Kristensen, N.B., Jørgensen, H., Labouriau, R. and Jakobsen, K., 2007. Milk intake and carbon dioxide production of piglets determined with the doubly labelled water technique. Animal 1: 881-888.
CrossrefGoogle Scholar
Theil, P.K., Labouriau R., Sejrsen, K., Thomsen, B. and Sørensen, M.T., 2005. Expression of genes involved in regulation of cell turnover during milk stasis and lactation rescue in sow mammary glands. Journal of Animal Science 83: 2349-2356.
CrossrefGoogle Scholar
Theil, P.K., Lauridsen, C. and Quesnel, H., 2014b. Neonatal piglet survival: impact of sow nutrition around parturition on foetal glycogen deposition, and production and composition of colostrum and transient milk. Animal 8: 1021-1030.
CrossrefGoogle Scholar
Theil, P.K., Nielsen, M.O., Sørensen, M.T. and Lauridsen, C., 2012. Lactation, milk and suckling. In: Bach Knudsen, K.E., Kjeldsen, N.J., Poulsen, H.D. and Jensen, B.B. (eds.) Nutritional physiology of pigs. Danish Pig Research Centre, Copenhagen, Denmark, pp. 1-47.
Google Scholar
Theil, P.K., Sejrsen, K., Hurley, W.L., Labouriau, R., Thomsen, B. and Sørensen, M.T., 2006. Role of suckling in regulating cell turnover and onset and maintenance of lactation in individual mammary glands of sows. Journal of Animal Science 84: 1691-1698.
CrossrefGoogle Scholar
Thodberg, K. and Sorensen, M.T., 2006. Mammary development and milk production in the sow: effects of udder massage, genotype and feeding in late gestation. Livestock Science 101: 116-125.
CrossrefGoogle Scholar
Tilton, S.L., Miller, P.S., Lewis, A.J., Reese, D.E. and Ermer, P.M., 1999. Addition of fat to the diets of lactating sows: I. Effects on milk production and composition and carcass composition of the litter at weaning. Journal of Animal Science 77: 2491-2500.
CrossrefGoogle Scholar
Toner, M.S., King, R.H., Dunshea, F.R., Dove, H. and Atwood, C.S., 1996. The effect of exogenous somatotropin on lactation performance of first-litter sows. Journal of Animal Science 74: 167-172.
CrossrefGoogle Scholar
Touchette, K.J., Allee, G.L., Newcomb, M.D. and Boyd, R.D., 1998. The lysine requirement of lactating primiparous sows. Journal of Animal Science 76: 1091-1097.
CrossrefGoogle Scholar
Van der Steen, H. and De Groot, P.N., 1992. Direct and maternal breed effects on growth and milk intake of piglets: Meishan versus Dutch breeds. Livestock Production Science 30: 361-373.
CrossrefGoogle Scholar
Verstegen, M.W.A., Mesu, J., Van Kempen, G. and Geerse, C., 1985. Energy balances of lactating sows in relation to feeding level and stage of lactation. Journal of Animal Science 60: 731-740.
CrossrefGoogle Scholar
Wechsler, B. and Brodmann, N., 1996. The synchronization of nursing bouts in group-housed sows. Applied Animal Behavior Science 47: 191-199.
CrossrefGoogle Scholar
Whitacre, M.D. and Threlfall, W.R., 1981. Effects of ergocryptine on plasma prolactin, luteinizing hormone and progesterone in the periparturient sow. American Journal of Veterinay Research 42: 1538-1541.
Google Scholar
Wientjes, J.G.M., Soede, N.M., Knol, E.F., Van den Brand, H. and Kemp, B., 2013. Piglet birth weight and litter uniformity: effects of weaning-to-pregnancy interval and body condition changes in sows of different parities and crossbred lines. Journal of Animal Science 91: 2099-2107.
CrossrefGoogle Scholar
Wolter, B.F., Ellis, M., Corrigan, B.P. and DeDecker, J.M., 2002. The effect of birth weight and feeding of supplemental milk replacer to piglets during lactation on preweaning and postweaning growth performance and carcass characteristics. Journal of Animal Science 80: 301-308.
CrossrefGoogle Scholar
Wung, S.C., Wu, H.P., Kou, Y.H., Shen, K.H., Koh, F.K. and Wan, W.C.M., 1977. Effect of thyrotropin-releasing hormone on serum thyroxine of lactating sows and the growth of their suckling young. Journal of Animal Science 45: 299-304.
CrossrefGoogle Scholar
Xu, R.J., Sangild, P.T., Zhang, Y.Q. and Zhang, S.H., 2002. Bioactive compounds in porcine colostrum and milk and their effects on intestinal development in neonatal pigs. In: Zabielski, R., Gregory, P.C. and Weström, B. (eds.) Biology of the intestine of growing animals. Elsevier Science, Amsterdam, the Netherlands, pp. 169-192.
Google Scholar
York, D.L. and Robison, O.W., 1985. Genotypic and phenotypic parameters of milk production in primiparous Duroc sows. Journal of Animal Science 61: 825-833.
CrossrefGoogle Scholar

Related titles:

Selenium in pig nutrition and health Understanding and combatting African Swine Fever Cover image The suckling and weaned piglet Cover image The value of fibre Cover image The gestating and lactating sow Poultry and pig nutrition Cover image Energy and Protein Metabolism and Nutrition Cover image Insects as food and feed: from production to consumption Cover image Phytate destruction - consequences for precision animal nutrition Cover image Weaning the pig

New titles

Institutional Offers

For institutional orders, please contact [email protected].

Purchase Options