Cover Image

Microbiota in health and disease: from pregnancy to childhood



Published: 2017  Pages: 344

eISBN: 978-90-8686-839-1 | ISBN: 978-90-8686-294-8

Book Type: Edited Collection
Aagaard, K., Ma, J., Antony, K.M., Ganu, R., Petrosino, J. and Versalovic, J., 2014. The placenta harbors a unique microbiome. Science Translational Medicine 6: 237-265.
Google Scholar
Abrahamsson, T.R., Jakobsson, H.E., Andersson, A.F., Björkstén, B., Engstrand, L. and Jenmalm, M.C., 2012. Low diversity of the gut microbiota in infants with atopic eczema. Journal of Allergy and Clinical Immunology 129: 434-440.
CrossrefGoogle Scholar
Abrahamsson, T.R., Jakobsson, H.E., Andersson, A.F., Björkstén, B., Engstrand, L. and Jenmalm, M.C., 2014. Low gut microbiota diversity in early infancy precedes asthma at school age. Clinical and Experimental Allergy 44: 842-850.
CrossrefGoogle Scholar
Abrahamsson, T.R., Sandberg Abelius, M., Forsberg, A., Björkstén, B. and Jenmalm, M.C., 2011. A Th1/Th2-associated chemokine imbalance during infancy in children developing eczema, wheeze and sensitization. Clinical and Experimental Allergy 41: 1729-1739.
CrossrefGoogle Scholar
Abrahamsson, T.R., Sinkiewicz, G., Jakobsson, T., Fredrikson, M. and Björkstén, B., 2009. Probiotic lactobacilli in breast milk and infant stool in relation to oral intake during the first year of life. Journal of Pediatric Gastroenterology and Nutrition 49: 349-354.
CrossrefGoogle Scholar
Abrahamsson, T.R., Wu, R.Y. and Jenmalm, M.C., 2015. Gut microbiota and allergy: the importance of the pregnancy period. Pediatric Research 77: 214-219.
CrossrefGoogle Scholar
Adachi, S., Yoshida, H., Kataoka, H. and Nishikawa, S., 1997. Three distinctive steps in Peyer’s patch formation of murine embryo. International Immunology 9: 507-514.
CrossrefGoogle Scholar
Adlerberth, I., Strachan, D.P., Matricardi, P.M., Ahrne, S., Orfei, L., Aberg, N., Perkin, M.R., Tripodi, S., Hesselmar, B., Saalman, R., Coates, A.R., Bonanno, C.L., Panetta, V. and Wold, A.E., 2007. Gut microbiota and development of atopic eczema in 3 European birth cohorts. Journal of Allergy and Clinical Immunology 120: 343-350.
CrossrefGoogle Scholar
An, D., Oh, S.F., Olszak, T., Neves, J.F., Avci, F.Y., Erturk-Hasdemir, D., Lu, X., Zeissig, S., Blumberg, R.S. and Kasper, D.L., 2014. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156: 123-133.
CrossrefGoogle Scholar
Arpaia, N., Campbell, C., Fan, X., Dikiy, S., Van der Veeken, J., Deroos, P., Liu, H., Cross, J.R., Pfeffer, K., Coffer, P.J. and Rudensky, A.Y., 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504: 451-455.
CrossrefGoogle Scholar
Arrieta, M.C., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., Kuzeljevic, B., Gold, M.J., Britton, H.M., Lefebvre, D.L., Subbarao, P., Mandhane, P., Becker, A., McNagny, K.M., Sears, M.R., Kollmann, T., Investigators, C.S., Mohn, W.W., Turvey, S.E. and Finlay, B.B., 2015. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Science Translational Medicine 7: 307ra152.
CrossrefGoogle Scholar
Atarashi, K., Tanoue, T., Oshima, K., Suda, W., Nagano, Y., Nishikawa, H., Fukuda, S., Saito, T., Narushima, S., Hase, K., Kim, S., Fritz, J.V., Wilmes, P., Ueha, S., Matsushima, K., Ohno, H., Olle, B., Sakaguchi, S., Taniguchi, T., Morita, H., Hattori, M. and Honda, K., 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500: 232-236.
CrossrefGoogle Scholar
Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., Cheng, G., Yamasaki, S., Saito, T., Ohba, Y., Taniguchi, T., Takeda, K., Hori, S., Ivanov, II, Umesaki, Y., Itoh, K. and Honda, K., 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331: 337-341.
CrossrefGoogle Scholar
Azad, M.B., Konya, T., Guttman, D.S., Field, C.J., Sears, M.R., HayGlass, K.T., Mandhane, P.J., Turvey, S.E., Subbarao, P., Becker, A.B., Scott, J.A., Kozyrskyj, A.L. and the Child Study Investigators, 2015. Infant gut microbiota and food sensitization: associations in the first year of life. Clinical and Experimental Allergy 45: 632-643.
CrossrefGoogle Scholar
Azad, M.B., Konya, T., Persaud, R.R., Guttman, D.S., Chari, R.S., Field, C.J., Sears, M.R., Mandhane, P.J., Turvey, S.E., Subbarao, P., Becker, A.B., Scott, J.A., Kozyrskyj, A.L. and Investigators, C.S., 2016. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG 123: 983-993.
CrossrefGoogle Scholar
Belkaid, Y. and Hand, T.W., 2014. Role of the microbiota in immunity and inflammation. Cell 157: 121-141.
CrossrefGoogle Scholar
Bisgaard, H., Li, N., Bonnelykke, K., Chawes, B.L., Skov, T., Paludan-Muller, G., Stokholm, J., Smith, B. and Krogfelt, K.A., 2011. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. Journal of Allergy and Clinical Immunology 128: 646-652.
CrossrefGoogle Scholar
Björkstén, B., Sepp, E., Julge, K., Voor, T. and Mikelsaar, M., 2001. Allergy development and the intestinal microflora during the first year of life. Journal of Allergy and Clinical Immunology 108: 516-520.
CrossrefGoogle Scholar
Blaser, M.J. and Falkow, S., 2009. What are the consequences of the disappearing human microbiota? Nature Reviews Microbiology 7: 887-894.
CrossrefGoogle Scholar
Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., A, D.L., Wu, F., Perez-Perez, G.I., Chen, Y., Schweizer, W., Zheng, X., Contreras, M., Dominguez-Bello, M.G. and Blaser, M.J., 2016. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine 8: 343-382.
Google Scholar
Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie, H., Zhong, H., Khan, M.T., Zhang, J., Li, J., Xiao, L., Al-Aama, J., Zhang, D., Lee, Y.S., Kotowska, D., Colding, C., Tremaroli, V., Yin, Y., Bergman, S., Xu, X., Madsen, L., Kristiansen, K., Dahlgren, J. and Jun, W., 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17: 690-703.
CrossrefGoogle Scholar
Cahenzli, J., Koller, Y., Wyss, M., Geuking, M.B. and McCoy, K.D., 2013. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Cell Host and Microbe 14: 559-570.
Google Scholar
Catassi, C., Bonucci, A., Coppa, G.V., Carlucci, A. and Giorgi, P.L., 1995. Intestinal permeability changes during the first month: effect of natural versus artificial feeding. Journal of Pediatric Gastroenterology and Nutrition 21: 383-386.
CrossrefGoogle Scholar
Chung, H., Pamp, S.J., Hill, J.A., Surana, N.K., Edelman, S.M., Troy, E.B., Reading, N.C., Villablanca, E.J., Wang, S., Mora, J.R., Umesaki, Y., Mathis, D., Benoist, C., Relman, D.A. and Kasper, D.L., 2012. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149: 1578-1593.
CrossrefGoogle Scholar
Collado, M.C., Rautava, S., Aakko, J., Isolauri, E. and Salminen, S., 2016. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Scientific Reports 6: 23129.
CrossrefGoogle Scholar
Costello, E.K., Stagaman, K., Dethlefsen, L., Bohannan, B.J. and Relman, D.A., 2012. The application of ecological theory toward an understanding of the human microbiome. Science 336: 1255-1262.
CrossrefGoogle Scholar
Cupedo, T., Lund, F.E., Ngo, V.N., Randall, T.D., Jansen, W., Greuter, M.J., De Waal-Malefyt, R., Kraal, G., Cyster, J.G. and Mebius, R.E., 2004. Initiation of cellular organization in lymph nodes is regulated by non-B cell-derived signals and is not dependent on CXC chemokine ligand 13. Journal of Immunology 173: 4889-4896.
CrossrefGoogle Scholar
Cupedo, T., Nagasawa, M., Weijer, K., Blom, B. and Spits, H., 2005. Development and activation of regulatory T cells in the human fetus. European Journal of Immunology 35: 383-390.
CrossrefGoogle Scholar
Dogra, S., Sakwinska, O., Soh, S.E., Ngom-Bru, C., Bruck, W.M., Berger, B., Brussow, H., Lee, Y.S., Yap, F., Chong, Y.S., Godfrey, K.M., Holbrook, J.D. and Group, G.S., 2015. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. MBio 6: e02419-14.
Google Scholar
Dominguez-Bello, M.G., De Jesus-Laboy, K.M., Shen, N., Cox, L.M., Amir, A., Gonzalez, A., Bokulich, N.A., Song, S.J., Hoashi, M., Rivera-Vinas, J.I., Mendez, K., Knight, R. and Clemente, J.C., 2016. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nature Medicine 22: 250-253.
CrossrefGoogle Scholar
Dowling, D.J. and Levy, O., 2014. Ontogeny of early life immunity. Trends in Immunology 35: 299-310.
CrossrefGoogle Scholar
Dzidic, M., Abrahamsson, T.R., Artacho, A., Björkstén, B., Collado, M.C., Mira, A. and Jenmalm, M.C., in press. Aberrant IgA responses to the gut microbiota during infancy precedes asthma and allergy development. Journal of Allergy and Clinical Immunology. DOI: http://doi.org/10.1016/j.jaci.2016.06.047. Google Scholar
El Aidy, S., Hooiveld, G., Tremaroli, V., Bäckhed, F. and Kleerebezem, M., 2013. The gut microbiota and mucosal homeostasis: colonized at birth or at adulthood, does it matter? Gut Microbes 4: 118-124.
CrossrefGoogle Scholar
Fagerås, M., Tomicic, S., Voor, T., Björkstén, B. and Jenmalm, M.C., 2011. Slow salivary secretory IgA maturation may relate to low microbial pressure and allergic symptoms in sensitized children. Pediatric Research 70: 572-577.
CrossrefGoogle Scholar
Faith, J.J., Ahern, P.P., Ridaura, V.K., Cheng, J. and Gordon, J.I., 2014. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Science Translational Medicine 6: 220ra211.
Google Scholar
Friedberg, S.H. and Weissman, I.L., 1974. Lymphoid tissue architecture. II. Ontogeny of peripheral T and B cells in mice: evidence against Peyer’s patches as the site of generation of B cells. Journal of Immunology 113: 1477-1492.
Google Scholar
Fulde, M. and Hornef, M.W., 2014. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunological Reviews 260: 21-34.
CrossrefGoogle Scholar
Funkhouser, L.J. and Bordenstein, S.R., 2013. Mom knows best: the universality of maternal microbial transmission. PLoS Biology 11: e1001631.
CrossrefGoogle Scholar
Følsgaard, N.V., Schjorring, S., Chawes, B.L., Rasmussen, M.A., Krogfelt, K.A., Brix, S. and Bisgaard, H., 2013. Pathogenic bacteria colonizing the airways in asymptomatic neonates stimulates topical inflammatory mediator release. American Journal of Respiratory and Critical Care Medicine 187: 589-595.
CrossrefGoogle Scholar
Gaboriau-Routhiau, V., Rakotobe, S., Lécuyer, E., Mulder, I., Lan, A., Bridonneau, C., Rochet, V., Pisi, A., De Paepe, M., Brandi, G., Eberl, G., Snel, J., Kelly, D. and Cerf-Bensussan, N., 2009. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31: 677-689.
CrossrefGoogle Scholar
Gensollen, T., Iyer, S.S., Kasper, D.L. and Blumberg, R.S., 2016. How colonization by microbiota in early life shapes the immune system. Science 352: 539-544.
CrossrefGoogle Scholar
Geuking, M.B., Cahenzli, J., Lawson, M.A., Ng, D.C., Slack, E., Hapfelmeier, S., McCoy, K.D. and Macpherson, A.J., 2011. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34: 794-806.
CrossrefGoogle Scholar
Gilbert, S.F., Bosch, T.C. and Ledon-Rettig, C., 2015. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nature Reviews Genetics 16: 611-622.
CrossrefGoogle Scholar
Gillings, M.R., Paulsen, I.T. and Tetu, S.G., 2015. Ecology and evolution of the human microbiota: fire, farming and antibiotics. Genes 6: 841-857.
CrossrefGoogle Scholar
Gollwitzer, E.S. and Marsland, B.J., 2015. Impact of early-life exposures on immune maturation and susceptibility to disease. Trends in Immunology 36: 684-696.
CrossrefGoogle Scholar
Gomez de Aguero, M., Ganal-Vonarburg, S.C., Fuhrer, T., Rupp, S., Uchimura, Y., Li, H., Steinert, A., Heikenwalder, M., Hapfelmeier, S., Sauer, U., McCoy, K.D. and Macpherson, A.J., 2016. The maternal microbiota drives early postnatal innate immune development. Science 351: 1296-1302.
CrossrefGoogle Scholar
Gosalbes, M.J., Llop, S., Valles, Y., Moya, A., Ballester, F. and Francino, M.P., 2013. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clinical and Experimental Allergy 43: 198-211.
CrossrefGoogle Scholar
Gustafson, C.E., Higbee, D., Yeckes, A.R., Wilson, C.C., De Zoeten, E.F., Jedlicka, P. and Janoff, E.N., 2014. Limited expression of APRIL and its receptors prior to intestinal IgA plasma cell development during human infancy. Mucosal Immunology 7: 467-477.
CrossrefGoogle Scholar
Gutzeit, C., Magri, G. and Cerutti, A., 2014. Intestinal IgA production and its role in host-microbe interaction. Immunological Reviews 260: 76-85.
CrossrefGoogle Scholar
Hansen, C.H., Nielsen, D.S., Kverka, M., Zakostelska, Z., Klimesova, K., Hudcovic, T., Tlaskalova-Hogenova, H. and Hansen, A.K., 2012. Patterns of early gut colonization shape future immune responses of the host. PLoS ONE 7: e34043.
CrossrefGoogle Scholar
Haynes, B.F., Martin, M.E., Kay, H.H. and Kurtzberg, J., 1988. Early events in human T cell ontogeny. Phenotypic characterization and immunohistologic localization of T cell precursors in early human fetal tissues. Journal of Experimental Medicine 168: 1061-1080.
Google Scholar
Houghteling, P.D. and Walker, W.A., 2015. Why is initial bacterial colonization of the intestine important to infants’ and children’s health? Journal of Pediatric Gastroenterology and Nutrition 60: 294-307.
CrossrefGoogle Scholar
Ismail, I.H., Oppedisano, F., Joseph, S.J., Boyle, R.J., Licciardi, P.V., Robins-Browne, R.M. and Tang, M.L., 2012. Reduced gut microbial diversity in early life is associated with later development of eczema but not atopy in high-risk infants. Pediatric Allergy and Immunology 23: 674-681.
CrossrefGoogle Scholar
Ivanov, I.I., Atarashi, K., Manel, N., Brodie, E.L., Shima, T., Karaoz, U., Wei, D., Goldfarb, K.C., Santee, C.A., Lynch, S.V., Tanoue, T., Imaoka, A., Itoh, K., Takeda, K., Umesaki, Y., Honda, K. and Littman, D.R., 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139: 485-498.
CrossrefGoogle Scholar
Jakobsson, H.E., Abrahamsson, T.R., Jenmalm, M.C., Harris, K., Quince, C., Jernberg, C., Björkstén, B., Engstrand, L. and Andersson, A.F., 2014. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63: 559-566.
CrossrefGoogle Scholar
Jenmalm, M.C., 2011. Childhood immune maturation and allergy development: regulation by maternal immunity and microbial exposure. American Journal of Reproductive Immunology 66, Suppl. 1: 75-80.
CrossrefGoogle Scholar
Jenmalm, M.C. and Duchén, K., 2013. Timing of allergy-preventive and immunomodulatory dietary interventions – are prenatal, perinatal or postnatal strategies optimal? Clinical and Experimental Allergy 43: 273-278.
CrossrefGoogle Scholar
Jimenez, E., Fernandez, L., Marin, M.L., Martin, R., Odriozola, J.M., Nueno-Palop, C., Narbad, A., Olivares, M., Xaus, J. and Rodriguez, J.M., 2005. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Current Microbiology 51: 270-274.
CrossrefGoogle Scholar
Jimenez, E., Marin, M.L., Martin, R., Odriozola, J.M., Olivares, M., Xaus, J., Fernandez, L. and Rodriguez, J.M., 2008. Is meconium from healthy newborns actually sterile? Research in Microbiology 159: 187-193.
CrossrefGoogle Scholar
Jones, C.A., Vance, G.H., Power, L.L., Pender, S.L., Macdonald, T.T. and Warner, J.O., 2001. Costimulatory molecules in the developing human gastrointestinal tract: a pathway for fetal allergen priming. Journal of Allergy and Clinical Immunology 108: 235-241.
CrossrefGoogle Scholar
Kachikis, A. and Englund, J.A., 2016. Maternal immunization: optimizing protection for the mother and infant. Journal of Infections 72, Suppl.l: S83-90.
Google Scholar
Kai-Larsen, Y., Gudmundsson, G.H. and Agerberth, B., 2014. A review of the innate immune defence of the human foetus and newborn, with the emphasis on antimicrobial peptides. Acta Paediatrica 103: 1000-1008.
CrossrefGoogle Scholar
Kalach, N., Rocchiccioli, F., De Boissieu, D., Benhamou, P.H. and Dupont, C., 2001. Intestinal permeability in children: variation with age and reliability in the diagnosis of cow’s milk allergy. Acta Paediatrica 90: 499-504.
Google Scholar
Kalliomäki, M., Kirjavainen, P., Eerola, E., Kero, P., Salminen, S. and Isolauri, E., 2001. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. Journal of Allergy and Clinical Immunology 107: 129-134.
CrossrefGoogle Scholar
Kawamoto, S., Maruya, M., Kato, L.M., Suda, W., Atarashi, K., Doi, Y., Tsutsui, Y., Qin, H., Honda, K., Okada, T., Hattori, M. and Fagarasan, S., 2014. Foxp3(+) T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41: 152-165.
CrossrefGoogle Scholar
Krumbiegel, D., Zepp, F. and Meyer, C.U., 2007. Combined Toll-like receptor agonists synergistically increase production of inflammatory cytokines in human neonatal dendritic cells. Human Immunology 68: 813-822.
CrossrefGoogle Scholar
Kuhn, K.A. and Stappenbeck, T.S., 2013. Peripheral education of the immune system by the colonic microbiota. Seminars in Immunology 25: 364-369.
CrossrefGoogle Scholar
Kukkonen, K., Kuitunen, M., Haahtela, T., Korpela, R., Poussa, T. and Savilahti, E., 2010. High intestinal IgA associates with reduced risk of IgE-associated allergic diseases. Pediatric Allergy and Immunology 21: 67-73.
CrossrefGoogle Scholar
Kuper, C.F., Van Bilsen, J., Cnossen, H., Houben, G., Garthoff, J. and Wolterbeek, A., 2016. Development of immune organs and functioning in humans and test animals: Implications for immune intervention studies. Reproductive Toxicology 64: 180-190.
CrossrefGoogle Scholar
Lécuyer, E., Rakotobe, S., Lengline-Garnier, H., Lebreton, C., Picard, M., Juste, C., Fritzen, R., Eberl, G., McCoy, K.D., Macpherson, A.J., Reynaud, C.A., Cerf-Bensussan, N. and Gaboriau-Routhiau, V., 2014. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40: 608-620.
CrossrefGoogle Scholar
Ley, R.E., Peterson, D.A. and Gordon, J.I., 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124: 837-848.
CrossrefGoogle Scholar
Lim, E.S., Wang, D. and Holtz, L.R., 2016. The bacterial microbiome and virome milestones of infant development. Trends in Microbiology 24: 801-810.
CrossrefGoogle Scholar
Mastromarino, P., Capobianco, D., Miccheli, A., Pratico, G., Campagna, G., Laforgia, N., Capursi, T. and Baldassarre, M.E., 2015. Administration of a multistrain probiotic product (VSL#3) to women in the perinatal period differentially affects breast milk beneficial microbiota in relation to mode of delivery. Pharmacology Research 95-96: 63-70.
Google Scholar
Maynard, C.L., Elson, C.O., Hatton, R.D. and Weaver, C.T., 2012. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489: 231-241.
CrossrefGoogle Scholar
Mazmanian, S.K., Liu, C.H., Tzianabos, A.O. and Kasper, D.L., 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122: 107-118.
CrossrefGoogle Scholar
McFall-Ngai, M., 2007. Adaptive immunity: care for the community. Nature 445: 153.
CrossrefGoogle Scholar
McFall-Ngai, M., Hadfield, M.G., Bosch, T.C., Carey, H.V., Domazet-Loso, T., Douglas, A.E., Dubilier, N., Eberl, G., Fukami, T., Gilbert, S.F., Hentschel, U., King, N., Kjelleberg, S., Knoll, A.H., Kremer, N., Mazmanian, S.K., Metcalf, J.L., Nealson, K., Pierce, N.E., Rawls, J.F., Reid, A., Ruby, E.G. Rumpho, M., Sanders, J.G., Tautz, D. and Wernegreen, J.J., 2013. Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the USA 110: 3229-3236.
CrossrefGoogle Scholar
Michaëlsson, J., Mold, J.E., McCune, J.M. and Nixon, D.F., 2006. Regulation of T cell responses in the developing human fetus. Journal of Immunology 176: 5741-5748.
CrossrefGoogle Scholar
Mold, J.E. and McCune, J.M., 2012. Immunological tolerance during fetal development: from mouse to man. Advances in Immunology 115: 73-111.
Google Scholar
Mubarak, A., Ahmed, M.S., Upile, N., Vaughan, C., Xie, C., Sharma, R., Acar, P., McCormick, M.S., Paton, J.C., Mitchell, T., Cunliffe, N. and Zhang, Q., 2016. A dynamic relationship between mucosal T helper type 17 and regulatory T-cell populations in nasopharynx evolves with age and associates with the clearance of pneumococcal carriage in humans. Clinical Microbiology and Infection 22: 736.e731-737.
Google Scholar
Obata, Y., Furusawa, Y., Endo, T.A., Sharif, J., Takahashi, D., Atarashi, K., Nakayama, M., Onawa, S., Fujimura, Y., Takahashi, M., Ikawa, T., Otsubo, T., Kawamura, Y.I., Dohi, T., Tajima, S., Masumoto, H., Ohara, O., Honda, K., Hori, S., Ohno, H., Koseki, H. and Hase, K., 2014. The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells. Nature Immunology 15: 571-579.
CrossrefGoogle Scholar
Ohnmacht, C., Park, J.H., Cording, S., Wing, J.B., Atarashi, K., Obata, Y., Gaboriau-Routhiau, V., Marques, R., Dulauroy, S., Fedoseeva, M., Busslinger, M., Cerf-Bensussan, N., Boneca, I.G., Voehringer, D., Hase, K., Honda, K., Sakaguchi, S. and Eberl, G., 2015. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science 349: 989-993.
CrossrefGoogle Scholar
Olszak, T., An, D., Zeissig, S., Vera, M.P., Richter, J., Franke, A., Glickman, J.N., Siebert, R., Baron, R.M., Kasper, D.L. and Blumberg, R.S., 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336: 489-493.
CrossrefGoogle Scholar
Pabst, O., Cerovic, V. and Hornef, M., 2016. Secretory IgA in the coordination of establishment and maintenance of the microbiota. Trends in Immunology 37: 287-296.
CrossrefGoogle Scholar
Papiernik, M., 1970. Correlation of lymphocyte transformation and morphology in the human fetal thymus. Blood 36: 470-479.
CrossrefGoogle Scholar
Penders, J., Gerhold, K., Stobberingh, E.E., Thijs, C., Zimmermann, K., Lau, S. and Hamelmann, E., 2013. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. Journal of Allergy and Clinical Immunology 132: 601-607.
CrossrefGoogle Scholar
Penders, J., Stobberingh, E.E., Van den Brandt, P.A. and Thijs, C., 2007. The role of the intestinal microbiota in the development of atopic disorders. Allergy 62: 1223-1236.
CrossrefGoogle Scholar
Perez, P.F., Doré, J., Leclerc, M., Levenez, F., Benyacoub, J., Serrant, P., Segura-Roggero, I., Schiffrin, E.J. and Donnet-Hughes, A., 2007. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119: e724-732.
CrossrefGoogle Scholar
Peterson, L.W. and Artis, D., 2014. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature Reviews Immunology 14: 141-153.
CrossrefGoogle Scholar
Planer, J.D., Peng, Y., Kau, A.L., Blanton, L.V., Ndao, I.M., Tarr, P.I., Warner, B.B. and Gordon, J.I., 2016. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534: 263-266.
CrossrefGoogle Scholar
Rautava, S., Collado, M.C., Salminen, S. and Isolauri, E., 2012. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. Neonatology 102: 178-184.
CrossrefGoogle Scholar
Rechavi, E., Lev, A., Lee, Y.N., Simon, A.J., Yinon, Y., Lipitz, S., Amariglio, N., Weisz, B., Notarangelo, L.D. and Somech, R., 2015. Timely and spatially regulated maturation of B and T cell repertoire during human fetal development. Science Translational Medicine 7: 276ra225.
Google Scholar
Rodriguez, J.M., Murphy, K., Stanton, C., Ross, R.P., Kober, O.I., Juge, N., Avershina, E., Rudi, K., Narbad, A., Jenmalm, M.C., Marchesi, J.R. and Collado, M.C., 2015. The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease 26: 26050.
Google Scholar
Rognum, T.O., Thrane, S., Stoltenberg, L., Vege, A. and Brandtzaeg, P., 1992. Development of intestinal mucosal immunity in fetal life and the first postnatal months. Pediatric Research 32: 145-149.
CrossrefGoogle Scholar
Rokhsefat, S., Lin, A. and Comelli, E.M., 2016. Mucin-microbiota interaction during postnatal maturation of the intestinal ecosystem: clinical implications. Digestive Diseases and Sciences 61: 1473-1486.
CrossrefGoogle Scholar
Rooks, M.G. and Garrett, W.S., 2016. Gut microbiota, metabolites and host immunity. Nature Reviews Immunology 16: 341-352.
CrossrefGoogle Scholar
Rosenberg, E. and Zilber-Rosenberg, I., 2016. Microbes drive evolution of animals and plants: the hologenome concept. MBio 7: e01395-15.
Google Scholar
Round, J.L., Lee, S.M., Li, J., Tran, G., Jabri, B., Chatila, T.A. and Mazmanian, S.K., 2011. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332: 974-977.
CrossrefGoogle Scholar
Round, J.L. and Mazmanian, S.K., 2010. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the USA 107: 12204-12209.
CrossrefGoogle Scholar
Salminen, S., Gibson, G.R., McCartney, A.L. and Isolauri, E., 2004. Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 53: 1388-1389.
CrossrefGoogle Scholar
Sandin, A., Björkstén, B., Böttcher, M.F., Englund, E., Jenmalm, M.C. and Bråbäck, L., 2011. High salivary secretory IgA antibody levels are associated with less late-onset wheezing in IgE-sensitized infants. Pediatric Allergy and Immunology 22: 477-481.
CrossrefGoogle Scholar
Satokari, R., Gronroos, T., Laitinen, K., Salminen, S. and Isolauri, E., 2009. Bifidobacterium and Lactobacillus DNA in the human placenta. Letters in Applied Microbiology 48: 8-12.
CrossrefGoogle Scholar
Schnupf, P., Gaboriau-Routhiau, V. and Cerf-Bensussan, N., 2013. Host interactions with Segmented Filamentous Bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system. Seminars in Immunology 25: 342-351.
CrossrefGoogle Scholar
Sefik, E., Geva-Zatorsky, N., Oh, S., Konnikova, L., Zemmour, D., McGuire, A.M., Burzyn, D., Ortiz-Lopez, A., Lobera, M., Yang, J., Ghosh, S., Earl, A., Snapper, S.B., Jupp, R., Kasper, D., Mathis, D. and Benoist, C., 2015. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science 349: 993-997.
CrossrefGoogle Scholar
Segata, N., 2015. Gut microbiome: Westernization and the disappearance of intestinal diversity. Current Biology 25: R611-613.
CrossrefGoogle Scholar
Sepp, E., Julge, K., Vasar, M., Naaber, P., Björkstén, B. and Mikelsaar, M., 1997. Intestinal microflora of Estonian and Swedish infants. Acta Paediatrica 86: 956-961.
CrossrefGoogle Scholar
Sjögren, Y.M., Jenmalm, M.C., Böttcher, M.F., Björkstén, B. and Sverremark-Ekström, E., 2009a. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clinical and Experimental Allergy 39: 518-526.
CrossrefGoogle Scholar
Sjögren, Y.M., Tomicic, S., Lundberg, A., Böttcher, M.F., Björkstén, B., Sverremark-Ekström, E. and Jenmalm, M.C., 2009b. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clinical and Experimental Allergy 39: 1842-1851.
CrossrefGoogle Scholar
Spencer, J., MacDonald, T.T., Finn, T. and Isaacson, P.G., 1986. The development of gut associated lymphoid tissue in the terminal ileum of fetal human intestine. Clinical and Experimental Immunology 64: 536-543.
Google Scholar
Stout, M.J., Conlon, B., Landeau, M., Lee, I., Bower, C., Zhao, Q., Roehl, K.A., Nelson, D.M., Macones, G.A. and Mysorekar, I.U., 2013. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. American Journal of Obstetrics and Gynecology 208: 226, e221-227.
Google Scholar
Sudo, N., Sawamura, S., Tanaka, K., Aiba, Y., Kubo, C. and Koga, Y., 1997. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. Journal of Immunology 159: 1739-1745.
Google Scholar
Sutherland, D.B., Suzuki, K. and Fagarasan, S., 2016. Fostering of advanced mutualism with gut microbiota by Immunoglobulin A. Immunology Reviews 270: 20-31.
CrossrefGoogle Scholar
Tanoue, T., Atarashi, K. and Honda, K., 2016. Development and maintenance of intestinal regulatory T cells. Nature Reviews Immunology 16: 295-309.
CrossrefGoogle Scholar
Thome, J.J., Bickham, K.L., Ohmura, Y., Kubota, M., Matsuoka, N., Gordon, C., Granot, T., Griesemer, A., Lerner, H., Kato, T. and Farber, D.L., 2016. Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nature Medicine 22: 72-77.
CrossrefGoogle Scholar
Travis, J., 2009. On the origin of the immune system. Science 324: 580-582.
CrossrefGoogle Scholar
Ursell, L.K., Van Treuren, W., Metcalf, J.L., Pirrung, M., Gewirtz, A. and Knight, R., 2013. Replenishing our defensive microbes. Bioessays 35: 810-817.
CrossrefGoogle Scholar
Van Nimwegen, F.A., Penders, J., Stobberingh, E.E., Postma, D.S., Koppelman, G.H., Kerkhof, M., Reijmerink, N.E., Dompeling, E., Van den Brandt, P.A., Ferreira, I., Mommers, M. and Thijs, C., 2011. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. Journal of Allergy and Clinical Immunology 128: 948-955.
CrossrefGoogle Scholar
Von Hertzen, L., Beutler, B., Bienenstock, J., Blaser, M., Cani, P.D., Eriksson, J., Farkkila, M., Haahtela, T., Hanski, I., Jenmalm, M.C., Kere, J., Knip, M., Kontula, K., Koskenvuo, M., Ling, C., Mandrup-Poulsen, T., Von Mutius, E., Makela, M.J., Paunio, T., Pershagen, G., Renz, H., Rook, G., Saarela, M., Vaarala, O., Veldhoen, M. and De Vos, W.M., 2015. Helsinki alert of biodiversity and health. Annals of Medicine 47: 218-225.
CrossrefGoogle Scholar
Von Mutius, E., 2016. The microbial environment and its influence on asthma prevention in early life. Journal of Allergy and Clinical Immunology 137: 680-689.
CrossrefGoogle Scholar
Voor, T., Julge, K., Böttcher, M.F., Jenmalm, M.C., Duchén, K. and Björkstén, B., 2005. Atopic sensitization and atopic dermatitis in Estonian and Swedish infants. Clinical and Experimental Allergy 35: 153-159.
CrossrefGoogle Scholar
Wesemann, D.R. and Nagler, C.R., 2016. The microbiome, timing, and barrier function in the context of allergic disease. Immunity 44: 728-738.
CrossrefGoogle Scholar
West, C.E., Jenmalm, M.C., Kozyrskyj, A.L. and Prescott, S.L., 2016. Probiotics for treatment and primary prevention of allergic diseases and asthma; looking back and moving forward. Expert Review of Clinical Immunology 12: 625-639.
CrossrefGoogle Scholar
West, C.E., Jenmalm, M.C. and Prescott, S.L., 2015a. The gut microbiota and its role in the development of allergic disease: a wider perspective. Clinical and Experimental Allergy 45: 43-53.
CrossrefGoogle Scholar
West, C.E., Renz, H., Jenmalm, M.C., Kozyrskyj, A.L., Allen, K.J., Vuillermin, P., Prescott, S.L., in, F.M.I.G. and in, F.M.I.G., 2015b. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies. Journal of Allergy and Clinical Immunology 135: 3-13.
CrossrefGoogle Scholar
White, G.P., Watt, P.M., Holt, B.J. and Holt, P.G., 2002. Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO- T cells. Journal of Immunology 168: 2820-2827.
CrossrefGoogle Scholar
Wilson, C.B., Westall, J., Johnston, L., Lewis, D.B., Dower, S.K. and Alpert, A.R., 1986. Decreased production of interferon-gamma by human neonatal cells. Intrinsic and regulatory deficiencies. Journal of Clinical Investigation 77: 860-867.
CrossrefGoogle Scholar
Yamamoto, M., Yamaguchi, R., Munakata, K., Takashima, K., Nishiyama, M., Hioki, K., Ohnishi, Y., Nagasaki, M., Imoto, S., Miyano, S., Ishige, A. and Watanabe, K., 2012. A microarray analysis of gnotobiotic mice indicating that microbial exposure during the neonatal period plays an essential role in immune system development. BMC Genomics 13: 335.
CrossrefGoogle Scholar
Yassour, M., Vatanen, T., Siljander, H., Hamalainen, A.M., Harkonen, T., Ryhanen, S.J., Franzosa, E.A., Vlamakis, H., Huttenhower, C., Gevers, D., Lander, E.S., Knip, M., Group, D.S. and Xavier, R.J., 2016. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Science Translational Medicine 8: 343ra381.
Google Scholar
Young, G.R., Zalewski, S., Cummings, S.P. and Lanyon, C., 2017. Development of the neonatal microbiota. In: Browne, P.D., Claassen, E. and Cabana, M.D. (eds.) Microbiota in health and disease: from pregnancy to childhood. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 39-56.
Google Scholar
Zhang, X., Mozeleski, B., Lemoine, S., Deriaud, E., Lim, A., Zhivaki, D., Azria, E., Le Ray, C., Roguet, G., Launay, O., Vanet, A., Leclerc, C. and Lo-Man, R., 2014. CD4 T cells with effector memory phenotype and function develop in the sterile environment of the fetus. Science Translational Medicine 6: 238ra272.
Google Scholar

Related titles:

Cover image microbiota Cover image Beneficial Microbes Cover image Meat Science Cover image Industrial, medical and environmental applications of microorganisms Cover image Mastitis control Cover image Aspergillus in the genomic era Cover image Rapid methods Cover image The mycotoxin Factbook Cover image Mycotoxins and phycotoxins

New titles

Institutional Offers

For institutional orders, please contact [email protected].

Purchase Options