Cover Image

The suckling and weaned piglet



Published: 2020  Pages: 312

eISBN: 978-90-8686-894-0 | ISBN: 978-90-8686-343-3

Book Type: Edited Collection
Adeleye, O.O., Brett, M., Blomfield, D., Guy, J.H. and Edwards, S.A., 2014. The effect of algal biomass supplementation in maternal diets on piglet survival in two housing systems. Livestock Science 162: 193-200.
CrossrefGoogle Scholar
Alonso-Spilsbury, M., Mota-Rojas, D., Villanueva-Garcıa, D., Martınez-Burnes, J., Orozco, H., Ramırez-Necoechea, R., Mayagoitia, A.L. and Trujillo, M.E., 2005. Perinatal asphyxia pathophysiology in pig and human: a review. Animal Reproduction Science 90: 1-30.
CrossrefGoogle Scholar
Amdi, C., Krogh, U., Flummer, C., Oksbjerg, N., Hansen, C.F. and Theil, P.K., 2013. Intrauterine growth restricted piglets defined by their head shape ingest insufficient amounts of colostrum. Journal of Animal Science 91: 5605-5613.
CrossrefGoogle Scholar
Bass, B.E., Bradley, C.L., Johnson, Z.B., Zier-Rush, C.E., Boyd, R.D., Usry, J.L., Maxwell, C.V. and Frank. J.W., 2017. Influence of dietary L-arginine supplementation of sows during late pregnancy on piglet birth weight and sow and litter performance during lactation. Journal of Animal Science 95: 248-256.
Google Scholar
Bate, L.A. and Hacker, R.R., 1985a. The influence of the sow’s adrenal activity on the ability of the piglet to absorb IgG from colostrum. Canadian Journal of Animal Science 65: 77-85.
CrossrefGoogle Scholar
Bate, L.A. and Hacker, R.R., 1985b. Influence of environmental temperature during late gestation and soon after birth on IgG absorption by newborn piglets. Canadian Journal of Animal Science 65: 87-93.
CrossrefGoogle Scholar
Baxter, E.M. and Edwards, S.A., 2018. Piglet mortality and morbidity: inevitable or unacceptable? In: Spinka, M. (ed.) Advances in Pig Welfare. Elsevier, Duxford, UK, pp. 73-100.
Google Scholar
Baxter, E.M., Edwards, S.A. and Andersen, I.L., 2018. Sow welfare in the farrowing crate and alternatives. In: Spinka, M. (ed.) Advances in Pig Welfare. Elsevier, Duxford, UK, pp. 27-72.
Google Scholar
Baxter, E.M., Jarvis, S., D’Eath, R.B., Ross, D.W., Robson, S.K., Farish, M., Nevison, I. and Edwards, S.A., 2008. Investigating the behavioural and physiological indicators of neonatal survival in pigs. Theriogenology 69: 773-783.
CrossrefGoogle Scholar
Baxter, E.M., Jarvis, S., Sherwood, L., Robson, S.K., Ormandy, E., Farish, M., Smurthwaite, K.M., Roehe, R., Lawrence, A.B. and Edwards, S.A., 2009. Indicators of piglet survival in an outdoor farrowing system. Livestock Science 124: 266-276.
CrossrefGoogle Scholar
Baxter, E.M., Schmitt, O. and Pedersen, L.J., 2020. Management of hyperprolific litters. In: Farmer, C. (ed.) The suckling and weaned piglet. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 71-106.
Google Scholar
Bazer, F.W., Ford, R.J. and Kensinger, R.S., 2001. Reproductive physiology. In: Pond, W. and Mersmann, H. (eds.) The biology of the domestic pig (2nd ed.). Cornell University Press, Ithaca, NY, USA, pp. 150-224.
Google Scholar
Bérard, J. and Bee, G., 2010. Effects of dietary L-arginine supplementation to gilts during early gestation on foetal survival, growth and myofiber formation. Animal 4: 1680-1687.
CrossrefGoogle Scholar
Bérard, J., Pardo, C., Bethaz, S., Kreuzer, M. and Bee, G., 2010. Intrauterine crowding decreases average birth weight and affects muscle fiber hyperplasia in piglets. Journal of Animal Science 88: 3242-3250.
CrossrefGoogle Scholar
Berthon, D., Herpin, P., Duchamp, C., Dauncey, M.J. and Le Dividich, J., 1993. Modification of thermogenic capacity in neonatal pigs by changes in thyroid status during late gestation. Journal of Developmental Physiology 19: 253-261.
Google Scholar
Bland, I.M., Rooke, J.A., Bland, V.C. and Sinclair, A.G., 2003. Appearance of immunoglobulin G in the plasma of piglets following intake of colostrum, with or without a delay in sucking. Animal Science 77: 277-286.
CrossrefGoogle Scholar
Bland, I.M., Rooke, J.A., Sinclair, A.G., Bland, V.C. and Edwards, S.A. 2001. Effects of supplementing the maternal diet with vitamins and vaccinating the sow on immunoglobulin G concentrations in piglet plasma. Proceedings of the Nutrition Society 60: 72A.
Google Scholar
Bontempo, V. and Jiang, X.R., 2015. Feeding various fat levels in sows: effects on immune status and performance of sows and piglets. In: Farmer, C. (ed.) The gestating and lactating sow. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 357-375.
Google Scholar
Boyd, R.D., Moser, B.D., Lewis, A.J., Peo, Jr, E.R., Johnson, R.K. and Nimmo, R.D., 1981. Effect of maternal dietary energy source on glucose homeostasis, liver glycogen content and carcass lipid in the neonatal pig. Journal of Animal Science 53: 1316-1324.
CrossrefGoogle Scholar
Boyd, R.D., Moser, B.D., Peo, Jr, E.R. and Cunningham, P.J., 1978. Effect of energy source prior to parturition and during lactation on tissue lipid, liver glycogen and plasma levels of some metabolites in the newborn pig. Journal of Animal Science 47: 874-882.
CrossrefGoogle Scholar
Brooks, C.C. and Davis, J.W., 1969. Changes in the perinatal pig. Journal of Animal Science 29: 325-329.
CrossrefGoogle Scholar
Canario, L., Bidanel, J-P. and Rydhmer, L., 2014. Genetic trends in maternal and neonatal behaviors and their association with perinatal survival in French Large White swine. Frontiers in Genetics 2014: 00410.
Google Scholar
Canario, L., Père, M.C., Tribout, T., Thomas, F., David, C., Gogué, J., Herpin, P., Bidanel, J.P. and Le Dividich, J., 2007. Estimation of genetic trends from 1977 to 1998 of body composition and physiological state of Large White pigs at birth. Animal 1: 1409-1413.
CrossrefGoogle Scholar
Che, L., Hu, L., Wu, C., Xu, Q., Zhou, Q., Peng, X., Fang, Z.F., Lin, Y., Xu, S.Y., Feng, B., Li, J., Tang, J., Zhang, R., Li, H., Theil, P.K. and Wu, D., 2019. Effects of increased energy and amino acid intake in late gestation on reproductive performance, milk composition, metabolic, and redox status of sows. Journal of Animal Science 97: 2914-2926.
CrossrefGoogle Scholar
Che, L., Yang, Z.G., Xu, M.M., Xu, S.Y., Che, L.Q., Lin, Y., Fang, Z.F., Feng, B., Li, J., Chen, D.W. and Wu, D., 2017. Maternal nutrition modulates fetal development by inducing placental efficiency changes in gilts. BMC Genomics 18: 213.
CrossrefGoogle Scholar
Chevaux, E., Sacy, A., Le Treut, Y. and Martineau. G., 2010. Intrauterine growth retardation (IUGR): Morphological and behavioural description. In: Proceedings of the 21st IPVS Congress, Vancouver, Canada. p. 209.
Google Scholar
Christensen, J. and Svensmark, B., 1997. Evaluation of producer recorded causes of preweaning mortality in Danish sow herds. Preventive Veterinary Medicine 32: 155-164.
CrossrefGoogle Scholar
Christison, G.I. and Farmer, C., 1983. Physical characteristics of perforated floors for young pigs. Canadian Agricultural Engineering 25: 75-80.
Google Scholar
Curtis, J. and Bourne, F.J., 1971. Immunoglobulin quantitation in sow serum, colostrum and milk and the serum of young pigs. Biochimica et Biophysica Acta 236: 319-332.
CrossrefGoogle Scholar
Curtis, S.E., 1970. Environmental-thermoregulatory interactions and neonatal piglet survival. Journal of Animal Science 31: 576-587.
CrossrefGoogle Scholar
De Passillé, A.M.B. and Hartsock, T.G., 1979. Within- and between-litter variation of proximate composition in newborn and 10-day-old Landrace swine. Journal of Animal Science 49: 1449-1457.
CrossrefGoogle Scholar
De Passillé, A.M.B., Rushen, J. and Pelletier, G., 1988. Sucking behaviour and serum immunoglobulin levels in neonatal piglets. Animal Production 47: 447-456.
Google Scholar
De Roth, L. and Downie, H.G., 1976. Evaluation of viability of neonatal swine. Canadian Veterinary Journal I7: 275 279.
Google Scholar
De Vos, M., Che, L., Huygelen, V., Willemen, S., Michiels, J., Van Cruchten, S. and Van Ginneken, C., 2014. Nutritional interventions to prevent and rear low-birthweight piglets. Journal of Animal Physiology and Animal Nutrition 98: 609-619.
CrossrefGoogle Scholar
Dickerson, J.W.T. and Dobbing, J., 1967. Prenatal and postnatal growth and development of the central nervous system of pig. Proceedings of the Royal Society of London, Series B 166: 384-395.
Google Scholar
Dickerson, J.W.T., Merat, A. and Widdowson, E.M., 1971. Intrauterine growth retardation in the pig. III. The chemical structure of the brain. Biology of the Neonate 19: 354-362.
Google Scholar
Edwards S A. 2002. Perinatal mortality in the pig: environmental or physiological solutions? Livestock Production Science, 78: 3-12.
CrossrefGoogle Scholar
Edwards, S.A. and Baxter, E.M., 2015. Piglet mortality – causes and prevention. In: Farmer, C. (ed.) The gestating and lactating sow. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 253-278.
Google Scholar
Edwards, S.A., Matheson, S.M. and Baxter, E.M., 2019. Genetic influences on intra-uterine growth retardation of piglet and management interventions for low birth weight piglets. In: Nutrition of hyperprolific sows. Novus International Inc, St Louis, MO, USA, pp. 207-235.
Google Scholar
Edwards, S.A., Smith, W.J., Fordyce, C. and MacMenemey, F., 1994. An analysis of the causes of piglet mortality in an outdoor breeding herd. Veterinary Record 135: 324-327.
CrossrefGoogle Scholar
Elliot, J.I. and Lodge, G.A., 1977. Body composition and glycogen reserves in the neonatal pig during the first 96 hours postpartum. Canadian Journal of Animal Science 57: 141-150.
CrossrefGoogle Scholar
Engelsmann, M.N., Hansen, C.F., Nielsen, M.N., Kristensen, A.R. and Amdi, C., 2019. Glucose injections at birth, warmth and placing at a nurse sow improve the growth of IUGR piglets. Animals 9: 519.
CrossrefGoogle Scholar
Ezekwe, M.O. and Martin, R.J., 1978. Influence of maternal alloxan diabetes or insulin injections on fetal glycogen reserves, muscle and liver development of pigs (Sus domesticus). Journal of Animal Science 47: 1121-1127.
CrossrefGoogle Scholar
Ezekwe, M.O., Ezekwe, E.I., Sen, D.K. and Ogolla, F., 1984. Effects of maternal streptozotocindiabetes on fetal growth, energy reserves and body composition of newborn pigs. Journal of Animal Science 59: 974-980.
CrossrefGoogle Scholar
Farmer, C., Robert, S. and Choinière, Y., 1998. Reducing ambient temperature in farrowing houses with a new controlled-environment system. Canadian Journal of Animal Science 78: 23-28.
CrossrefGoogle Scholar
Farmer, C., Robertson, P., Xiao, C.W., Rehfeldt, C. and Kalbe, C., 2016. Exogenous genistein in late gestation: effects on fetal development and sow and piglet performance. Animal 10: 1423-1430.
CrossrefGoogle Scholar
Ferguson, E.M., Ashworth, C.J., Edwards, S.A., Hawkins, N. and Hunter, M.G., 2003. Effect of different nutritional regimens before ovulation on plasma concentrations of metabolic and reproductive hormones and oocyte maturation in gilts. Reproduction 126: 61-71.
CrossrefGoogle Scholar
Ferguson, E.M., Slevin, J., Hunter, M.G., Edwards, S.A. and Ashworth, C.J., 2007. Beneficial effects of a high fibre diet on oocyte maturity and embryo survival in gilts. Reproduction 133: 433-439.
CrossrefGoogle Scholar
Feyera, T., Højgaard, C.K., Vinther, J., Bruun, T.S. and Theil, P. K., 2017. Dietary supplement rich in fiber fed to late gestating sows during transition reduces rate of stillborn piglets. Journal of Animal Science 95: 5430-5438.
CrossrefGoogle Scholar
Feyera, T., Pedersen, T.F., Krogh, U., Foldager, L. and Theil, P.K., 2018. Impact of sow energy status during farrowing on farrowing kinetics, frequency of stillborn piglets, and farrowing assistance. Journal of Animal Science 96: 2320-2331.
CrossrefGoogle Scholar
Fowden, A.L. and Forhead, A.J., 2004. Endocrine mechanisms of intrauterine programming. Reproduction 127: 515-526.
CrossrefGoogle Scholar
Fowden, A.L., Giussani, D.A. and Forhead, A.J. 2006. Intrauterine programming of physiological systems: causes and consequences. Physiology 21: 29-37.
CrossrefGoogle Scholar
Foxcroft, G.R., Dixon, W.T., Dyck, M.K., Novak, S., Harding, J.C.S. and Almeida, F.C.R.L., 2009. Prenatal programming of postnatal development in the pig. Society of Reproduction and Fertility Supplement 66: 213-239.
Google Scholar
Foxcroft, G.R., Dixon, W.T., Novak, S., Putman, C.T., Town, S.C. and Vinsky, M.D.A., 2006. The biological basis for prenatal programming of postnatal performance in pigs. Journal of Animal Science 84 (Suppl.): E105-E112.
CrossrefGoogle Scholar
Gondret, F., Lefaucheur, L., Perruchot, M.H., Farmer, C., Liaubet, L. and Louveau, I., 2020. Lean and fat development in piglets. In: Farmer, C. (ed.) The suckling and weaned piglet. Wageningen Academic Publishers, Wageningen, the Netherlands. pp. 41-69.
Google Scholar
Hales, J., Moustsen, V.A., Devreese, A.M., Nielsen, M.B.F. and Hansen, C.F., 2015. Comparable farrowing progress in confined and loose housed hyper-prolific sows. Livestock Science 171: 64-72.
CrossrefGoogle Scholar
Hales, J., Moustsen, V.A., Nielsen, M.B.F. and Hansen, C.F., 2013. Individual physical characteristics of neonatal piglets affect preweaning survival of piglets born in a non-crated system. Journal of Animal Science 91: 4991-5003.
CrossrefGoogle Scholar
Harris, A. and Seckl, J., 2011. Glucocorticoids, prenatal stress and the programming of disease. Hormones and Behaviour 59: 279-289.
CrossrefGoogle Scholar
Herpin, P., Damon, M. and Le Dividich, J., 2002. Development of thermoregulation and neonatal survival in pigs. Livestock Production Science 78: 25-45.
CrossrefGoogle Scholar
Herpin, P., Hulin, J.C., Le Dividich, J. and Fillaut, M., 2001. Effect of oxygen inhalation at birth on the reduction of early postnatal mortality in pigs. Journal of Animal Science 79: 5-10.
CrossrefGoogle Scholar
Herpin, P., Le Dividich, J. and Amaral, N., 1993. Effect of selection for lean tissue growth on body composition and physiological state of pig at birth. Journal of Animal Science 71: 2465-2653.
Google Scholar
Herpin, P., Le Dividich, J., Berthon, D. and Hulin, J.-C., 1994. Assessment of thermoregulatory and postprandial thermogenesis over the first 24 hours after birth in pigs. Experimental Physiology 79: 1011-1019.
CrossrefGoogle Scholar
Herpin, P., Le Dividich, J., Hulin, J.C., Fillaut, M., De Marco, F. and Bertin, R., 1996. Effects of the level of asphyxia during delivery on viability at birth and early postnatal vitality of newborn pigs. Journal of Animal Science 74: 2067-2075.
CrossrefGoogle Scholar
Herpin, P., Lossec, G., Schmidt, I., Cohen-Adad, F., Duchamp, C., Lefaucheur, L., Goglia, F. and Lanni, A., 2002. Effect of age and cold exposure on morphofunctional characteristics of skeletal muscle in neonatal pigs. European Journal of Physiology 444: 610-618.
CrossrefGoogle Scholar
Herpin, P., Vincent, A. and Damon, M., 2004. Effect of breed and body weight on thermoregulatory abilities of European (Piétrain × (Landrace × Large White) and Chinese (Meishan) piglets at birth. Livestock Production Science 88: 17-26.
CrossrefGoogle Scholar
Holub, A., 1971. Problem of neonatal pig survival. Acta Veterinaria Brno. (Suppl. 2): 13-17.
Google Scholar
Hoy, S., Lutter, C., Puppe, B. and Wahner, M., 1997. The influence of early postnatal piglet vitality on liveweight gain and mortality. Animal Research and Development 45: 89-101.
Google Scholar
Jarvis, S., Moinard, C., Robson, S.K., Baxter, E., Ormandy, E., Douglas, A.J., Seckl, J.R. Russell, J.A. and Lawrence, A.B., 2006. Programming the offspring of the pig by prenatal social stress: neuroendocrine activity and behaviour. Hormones and Behaviour 49: 68-80.
CrossrefGoogle Scholar
Jean, K.-B. and Chiang, S.-H., 1999. Increased survival of neonatal pigs by supplementing medium-chain triglycerides in late-gestating sow diets. Animal Feed Science and Technology 76: 241-250.
CrossrefGoogle Scholar
Kacuiba-Uścilko, H., 1972. Hormonal regulation of thermogenesis in the new-born pig. Biology of the Neonate 21: 245-258.
CrossrefGoogle Scholar
Kasser, T.R., Martin, R.J., Gahagan, J.H. and Wangsness, P.J., 1981. Fasting plasma hormones and metabolites in feral and domestic newborn pigs. Journal of Animal Science 53: 420-426.
CrossrefGoogle Scholar
Kelley, R.L., Jungst, S.B., Spencer, T.E., Owsley, W.F., Rahe, C.H. and Mulvaney, D.R., 1995. Maternal treatment with somatotropin alters embryonic development and early postnatal growth of pigs. Domestic Animal Endocrinology 12: 83-94.
CrossrefGoogle Scholar
Kielland, C., Rootwelt, V., Reksen, O. and Framstad, T., 2015. The association between immunoglobulin G in sow colostrum and piglet plasma. Journal of Animal Science 93: 4453-4462.
CrossrefGoogle Scholar
Klobasa, F., Werhahn, E. and Butler, J.E., 1981. Regulation of humoral immunity in the piglet by immunoglobulins of maternal origin. Research in Veterinary Science 31: 195-206.
CrossrefGoogle Scholar
Knol, E.F., Leenhouwers, J.I. and Van der Lende, T., 2002. Genetic aspects of piglet survival. Livestock Production Science 78: 47-55.
CrossrefGoogle Scholar
Kranendonk, G., Hopster, H., Fillerup, M., Ekkel, E.D., Mulder, E.J., Wiegant, V.M. and Taverne, M.A., 2006. Lower birth weight and attenuated adrenocortical response to ACTH in offspring from sows that orally received cortisol during gestation. Domestic Animal Endocrinology 30: 218-238.
CrossrefGoogle Scholar
Kveragas, C.L., Seerley, R.W., Martin, R.J. and Vandergrift, W.L., 1986. Influence of exogenous growth hormone and gestational diet on blood and milk characteristics and on baby pig blood, body composition and performance. Journal of Animal Science 63: 1877-1887.
CrossrefGoogle Scholar
Laws, J., Laws, A., Lean, I.J., Dodds, P.F. and Clarke L., 2007. Growth and development of offspring following supplementation of sow diets with oil during early to mid gestation. Animal 1: 1482-1489.
CrossrefGoogle Scholar
Le Dividich, J. and Noblet, J., 1981. Colostrum intake and thermoregulation in the neonatal pig in relation to environmental temperature. Biology of the Neonate 40: 167-174.
CrossrefGoogle Scholar
Le Dividich, J., Rooke, J.A. and Herpin, P., 2005. Nutritional and immunological importance of colostrum for the new-born pig. Journal of Agricultural Science 143: 469-485.
CrossrefGoogle Scholar
Leenhouwers, J.I., De Almeida Junior, C.A., Knol, E.F. and Van der Lende, T., 2001. Progress of farrowing and early postnatal pig behavior in relation to genetic merit for pig survival. Journal of Animal Science 79: 1416-1422.
CrossrefGoogle Scholar
Leenhouwers, J.I., Knol, E.F. and Van der Lende, T., 2002a. Differences in late prenatal development as an explanation for genetic differences in piglet survival. Livestock Production Science 78: 57-62.
CrossrefGoogle Scholar
Leenhouwers, J.I., Knol, E.F., De Groot, P.N., Vos, H. and Van der Lende, T., 2002b. Fetal development in the pig in relation to genetic merit for piglet survival. Journal of Animal Science 80: 1759-1770.
CrossrefGoogle Scholar
Lefaucheur, L., Edom, F., Ecolan, P. and Butler-Browne. G.S., 1995. Pattern of muscle fiber type formation in the pig. Developmental dynamics 203: 27-41.
CrossrefGoogle Scholar
Lewis, E., Laforest, J.P., Gariépy, C. and Farmer, C., 2003. Effects of GRF in early gestation on foetal development in Large White and Genex-Meishan gilts. Canadian Journal of Animal Science 83: 469-477.
CrossrefGoogle Scholar
Mateo, R. D., Wu, G., Moon, H.K., Carroll, J.A. and Kim, S.W., 2008. Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. Journal of Animal Science 86: 827-835.
CrossrefGoogle Scholar
Mateo, R.D., Wu, G., Bazer, F.W., Park, J.C., Shinzato, I. and Kim, S.W., 2007. Dietary L-arginine supplementation enhances the reproductive performance of gilts. Journal of Nutrition 137: 652-656.
CrossrefGoogle Scholar
Matheson, S.M., Walling, G.A. and Edwards, S.A., 2018. Genetic selection against intrauterine growth retardation in piglets: a problem at the piglet level with a solution at the sow level. Genetics Selection Evolution 50: 46.
CrossrefGoogle Scholar
Matheson, S.M., Walling, G.A. and Edwards, S.A., in press. Porcine intrauterine growth restriction: pathological response to limited resources or adaptive response to maximise survival? PLoS ONE.
Google Scholar
McGinnis, R.M., Marple, D.N., Ganjam, V.K., Prince, T.J. and Pritchett, J.F., 1981. The effect of floor temperature, supplemental heat and drying at birth on neonatal swine. Journal of Animal Science 53: 1424-1431.
CrossrefGoogle Scholar
McPherson, R.L., Ji, F., Wu, G., Blanton, J.R. and Kim, S.W., 2004. Growth and compositional changes of fetal tissues in pigs. Journal of Animal Science 82: 2534-2540.
CrossrefGoogle Scholar
Mota-Rojas, D., Martínez-Burnes, J., Trujillo, M.E., López, A., Rosales, A.M., Ramirez, R., Orozco, H., Merino, A. and AlonsoSpilsbury, M., 2005. Uterine and fetal asphyxia monitoring in parturient sows treated with oxytocin. Animal Reproduction Science 86: 131-141.
CrossrefGoogle Scholar
Muns, R., Manzanilla, E.G. Sol, C., Manteca, X. and Gasa, J., 2013. Piglet behavior as a measure of vitality and its influence on piglet survival and growth during lactation, Journal of Animal Science 91:1838-1843.
CrossrefGoogle Scholar
Muns, R., Silva, C., Manteca, X. and Gasa, J., 2014. Effect of cross-fostering and oral supplementation with colostrum on performance of newborn piglets. Journal of Animal Science 92: 1193-1199.
CrossrefGoogle Scholar
Newcomb, M.D., Harmon, D.L., Nelssen, J.L., Thulin, A.J. and Allee, G.L., 1991. Effect of energy source fed to sows during late gestation on neonatal blood metabolite homeostasis, energy stores and composition. Journal of Animal Science 69: 230-236.
CrossrefGoogle Scholar
Niekamp, S.R., Sutherland, M.A., Dahl, G.E. and Salak-Johnson, J.L., 2006. Photoperiod influences the immune status of multiparous pregnant sows and their piglets. Journal of Animal Science 84: 2072-2082.
CrossrefGoogle Scholar
Otten, W., Kanitz, E. and Tuchscherer, M., 2015. The impact of pre-natal stress on offspring development in pigs Journal of Agricultural Science 153: 907-919.
CrossrefGoogle Scholar
Otten, W., Kanitz, E., Tuchscherer, M., Puppe, B. and Nürnberg, G., 2007. Repeated administration of adrenocorticotropic hormone during gestation in gilts: effects on growth, behaviour and immune responses of their piglets. Livestock Science 106: 261-270.
CrossrefGoogle Scholar
Pandolfi, F., Edwards, S.A., Robert, F. and Kyriazakis, I., 2017. Risk factors associated with the different causes of piglet perinatal mortality in French farms. Preventive Veterinary Medicine 137: 1-12.
CrossrefGoogle Scholar
Pastorelli, G., Neil, M. and Wigren, I., 2009. Body composition and muscle glycogen contents of piglets of sows fed diets differing in fatty acids profile and contents. Livestock Science 123: 329-334.
CrossrefGoogle Scholar
Pedersen, L.J., Berg, P., Jørgensen, G. and Andersen, I.L., 2011. Neonatal piglet traits of importance for survival in crates and indoor pens. Journal of Animal Science 89: 1207-1218.
CrossrefGoogle Scholar
Père, M.C. and Etienne, M., 2000. Uterine blood flow in sows: effects of pregnancy stage and litter size. Reproduction Nutrition Development, 40: 369-382.
CrossrefGoogle Scholar
Pinelli-Saavedra, A., Calderón De la Barca, A.M., Hernández, J., Valenzuela, R. and Scaife, J.R., 2008. Effect of supplementing sows’ feed with α-tocopherol acetate and vitamin C on transfer of α-tocopherol to piglet tissues, colostrum, and milk: aspects of immune status of piglets. Research in Veterinary Science 85: 92-100.
CrossrefGoogle Scholar
Randall, G.C.B., 1971. The relationship of arterial blood pH and pCO, to the viability of the newborn piglet. Canadian Journal of Comparative Medicine and Veterinary Science 35: 141-146.
Google Scholar
Rangstrup-Christensen, L., Schild, S-L.A., Pedersen, L.J. and Sørensen, J.T., 2018. Causes of preweaning mortality in organic outdoor sow herds. Research in Veterinary Science 118, 171-180.
CrossrefGoogle Scholar
Rehfeldt, C., Adamovic, I. and Kuhn, G., 2007. Effects of dietary daidzein supplementation of pregnant sows on carcass and meat quality and skeletal muscle cellularity of the progeny. Meat Science 75: 102-111.
Google Scholar
Rehfeldt, C., Kuhn, G., Nürnberg, G., Kanitz, E., Schneider, F., Beyer, M., Nürnberg, K. and Ender, K. 2001. Effects of exogenous somatotropin during early gestation on maternal performance, fetal growth, and compositional traits in pigs. Journal of Animal Science 79: 1789-1799.
CrossrefGoogle Scholar
Ren, P., Yang, X.J., Kim, J.S., Menon, D. and Baidoo, S.K., 2017. Effect of different feeding levels during three short periods of gestation on sow and litter performance over two reproductive cycles. Animal Reproduction Science 177: 42-55.
CrossrefGoogle Scholar
Revermann, R., Winckler, C., Fuerst-Waltl, B., Leeb, C. and Pfeiffer, C., 2018. Assessment of viability of newborn piglets using an adjusted APGAR score. Journal of Central European Agriculture 19: 829-833.
CrossrefGoogle Scholar
Roehe, R. and Kalm, E., 2000. Estimation of genetic and environmental risk factors associated with pre-weaning mortality in piglets using generalized linear mixed models. Animal Science 70: 227-240.
CrossrefGoogle Scholar
Roehe, R., Shrestha, N.P., Mekkawy, W., Baxter, E.M., Knap, P.W., Smurthwaite, K.M., Jarvis, S., Lawrence, A.B. and Edwards, S.A., 2010. Genetic parameters of piglet survival and birth weight from a two-generation crossbreeding experiment under outdoor conditions designed to disentangle direct and maternal effects. Journal of Animal Science 88: 1276-1285.
CrossrefGoogle Scholar
Rooke, J.A. and Bland, I.M., 2002. The acquisition of passive immunity in the new-born piglet. Livestock Production Science 78: 13-23.
CrossrefGoogle Scholar
Rooke, J.A., Shanks, M. and Edwards, S.A., 2000. Effect of offfering maize, linseed or tuna oils throughout pregnancy and lactation on sow and piglet tissue composition and piglet performance. Animal Science 71: 289-299.
CrossrefGoogle Scholar
Rooke, J.A., Sinclair, A.G. and Edwards, S.A., 2001. Feeding tuna oil to the sow at different times during pregnancy has different effects on piglet long-chain polyunsaturated fatty acid composition at birth and subsequent growth. British Journal of Nutrition 86: 21-30.
CrossrefGoogle Scholar
Rootwelt, V., Reksen, O., Farstad, W. and Framstad, T., 2012. Associations between intrapartum death and piglet, placental, and umbilical characteristics. Journal of Animal Science 90: 4289-4296.
CrossrefGoogle Scholar
Rootwelt, V., Reksen, O., Farstad, W. and Framstad, T., 2013. Postpartum deaths: Piglet, placental, and umbilical characteristics. Journal of Animal Science 91: 2647-2656.
CrossrefGoogle Scholar
Rossi, R., Pastorelli, G., Bontempo, V. and Corino, C., 2004. Effects of dietary conjugated linoleic acid (CLA) on immunoglobulin concentration in sow colostrum and piglet serum. Veterinary Research Communications 28: 241-244.
CrossrefGoogle Scholar
Rutherford, K.M., Robson, S.K., Donald, R.D., Jarvis, S., Sandercock, D.A., Scott, E.M., Nolan, A.M. and Lawrence, A.B., 2009. Pre-natal stress amplifies the immediate behavioural responses to acute pain in piglets. Biology Letters 5: 452-454.
CrossrefGoogle Scholar
Rutherford, K.M.D., Baxter, E.M., D’Eath, R.B., Turner, S.P., Arnott, G., Roehe, R., Ask, B., Sandøe, P., Moustsen, V.A., Thorup, F., Edwards, S.A., Berg, P. and Lawrence, A.B., 2013. The welfare implications of large litter size in the domestic pig. I: Biological factors, Animal Welfare 22: 199-218.
CrossrefGoogle Scholar
Salmon, H., Berri, M,. Gerdts, V. and Meurens, F., 2009. Humoral and cellular factors of maternal immunity in swine. Developmental and Comparative Immunology 33: 384-393.
CrossrefGoogle Scholar
Schodl, K., Revermann, R., Winckler, C., Fuerst-Waltl, B., Leeb, C., Willam, A., Knapp, P. and Pfeiffer, C., 2019. Assessment of piglet vitality by farmers – validation of a scoring scheme and estimation of associated genetic parameters. Animals 9: 317.
CrossrefGoogle Scholar
Seerley, R.W. and Poole, D.R., 1974. Effect of prolonged fasting on carcass composition and blood fatty acids and glucose of neonatal swine. Journal of Nutrition 104: 210-217.
CrossrefGoogle Scholar
Seerley, R.W., Pace, T.A., Foley, C.W. and Scarth, R.D., 1974. Effect of energy intake prior to parturition on milk lipids and survival rate, thermostability and carcass composition of piglets. Journal of Animal Science 38: 64-70.
CrossrefGoogle Scholar
Silva, P.F.N., Finch, A.M., Antipatis, C. and Ashworth, C.J., 2000. Changes in the relationship between porcine fetal size and organ development during pregnancy. Proceedings of the British Society of Animal Science, p. 123.
Google Scholar
Sinclair, K.D., Rutherford, K.M.D., Wallace, J.M., Brameld, J.M., Stoger, R., Alberio, R., Sweetman, D., Gardner, D.S., Perry, V.E.A., Adam, C.L., Ashworth, C.J., Robinson J.E. and Dwyer, C.M., 2016. Epigenetics and developmental programming of welfare and production traits in farm animals. Reproduction, Fertility and Development 28: 1443-1478.
CrossrefGoogle Scholar
Theil, P.K., Cordero, G., Henckel, P., Puggaard, L., Oksbjerg, N. and Sorensen, M.T., 2011. Effects of gestation and transition diets, piglet birth weight, and fasting time on depletion of glycogen pools in liver and 3 muscles of newborn piglets. Journal of Animal Science 89: 1805-1816.
CrossrefGoogle Scholar
Tuchscherer, M., Kanitz, E., Otten, W. and Tuchscherer, A., 2002. Effects of prenatal stress on cellular and humoral immune responses in neonatal pigs. Veterinary Immunology and Immunopathology 86: 195-203.
CrossrefGoogle Scholar
Tuchscherer, M., Puppe, B., Tuchscherer, A. and Tiemann, U., 2000. Early identification of neonates at risk: Traits of newborn piglets with respect to survival. Theriogenology 54: 371-388.
CrossrefGoogle Scholar
Ullrey, D.E., Sprague, J.L., Becker, D.E. and Miller, E.R., 1965. Growth of the swine fetus. Journal of Animal Science 24: 711-717.
CrossrefGoogle Scholar
Vaillancourt, J.P., Stein, T.E., Marsh, W.E., Leman, A.D. and Dial, G.D., 1990. Validation of producer-recorded causes of preweaning mortality in swine. Preventive Veterinary Medicine 10: 119-130.
CrossrefGoogle Scholar
Van den Brand, H., Soede, N.M. and Kemp, B., 2006. Supplementation of dextrose to the diet during the weaning to estrus interval affects subsequent variation in within-litter piglet birth weight. Animal Reproduction Science 91: 353-358.
CrossrefGoogle Scholar
Van den Brand, H., Van Enckevort, L.C.M., Van der Hoeven, E.M. and Kemp, B., 2009. Effects of dextrose plus lactose in the sows diet on subsequent reproductive performance and within litter birth weight variation. Reproduction in Domestic Animals 44: 884-888.
CrossrefGoogle Scholar
Van Kempen, T., 2007. Supplements to facilitate parturation and reduce perinatal mortality in pigs. In: Garnsworthy, P.C. and Wiseman, J. (eds.) Recent advance in animal nutrition. Nottingham University Press, Nottinghan, UK, pp. 317-330.
Google Scholar
Van Rens, B.T.T.M., De Koning, G., Bergsma, R. and Van der Lende T., 2005. Preweaning piglet mortality in relation to placental efficiency. Journal of Animal Science 83: 144-151.
CrossrefGoogle Scholar
Vanden Hole, C., Aerts, P., Prims, S., Ayuso, M., Van Cruchten, S. and Van Ginneken, C., 2018a. Does intrauterine crowding affect locomotor development? A comparative study of motor performance, neuromotor maturation and gait variability among piglets that differ in birth weight and vitality. PLoS ONE 13: e0195961.
Google Scholar
Vanden Hole, C., Ayuso, M., Aerts, P., Prims, S., Van Cruchten, S. and Van Ginneken, C., 2019. Glucose and glycogen levels in piglets that differ in birth weight and vitality. Heliyon 5: e02510.
Google Scholar
Vanden Hole, C., Cleuren, S., Van Ginneken, C., Prims, S., Ayuso, M., Van Cruchten, S. and Aerts, P., 2018b. How does intrauterine crowding affect locomotor performance in newborn pigs? A study of force generating capacity and muscle composition of the hind limb. PLoS ONE 13: e0209233.
Google Scholar
Vanden Hole, C., Goyens, J., Prims, S., Fransen, E., Hernando, M.A., Van Cruchten, S., Aerts, P. and Van Ginneken, C., 2017. How innate is locomotion in precocial animals? A study on the early development of spatio-temporal gait variables and gait symmetry in piglets. Journal of Experimental Biology 220: 2706-2716.
CrossrefGoogle Scholar
Wu, F., Li, P.L., Bai, L.L., Liu, H., Lai, C.H., Thacker, P.A. and Wang, F.L., 2015. Responses in colostrum production and immunoglobulin concentrations to conjugated linoleic acid fed to multiparous sows during late gestation. Animal Feed Science and Technology 210: 200-208.
CrossrefGoogle Scholar
Wu, G., Bazer, F.W., Cudd, T.A., Meininger, C.J. and Spencer, T.E., 2004. Maternal nutrition and fetal development. Journal of Nutrition 134: 2169-2172.
CrossrefGoogle Scholar
Wu, G., Bazer, F.W., Johnson, G.A., Knabe, D.A., Burghardt, R.C., Spencer, T.E., Li, X.L. and Wang J.J., 2011. Important roles for L-glutamine in swine nutrition and production. Journal of Animal Science 89: 2017-2030.
CrossrefGoogle Scholar
Wu, G., Bazer, F.W., Wallace J.M. and Spencer T.E., 2006. Intrauterine growth retardation: implications for the animal sciences. Journal of Animal Science 84: 2316-2337.
CrossrefGoogle Scholar
Yang, Y.X., Heo, S., Jin, Z., Yun, J.H., Choi, J.Y., Yoon, S.Y., Park, M.S., Yang, B.K. and Chae, B.J., 2009. Effects of lysine intake during late gestation and lactation on blood metabolites, hormones, milk composition and reproductive performance in primiparous and multiparous sows. Animal Reproduction Science 112:199-214.
CrossrefGoogle Scholar
Yun, J., Swan, K.M., Vienola, K., Kim, Y.Y., Oliviero, C., Peloniemi, O.A.T. and Valros, A., 2014. Farrowing environment has an impact on sow metabolic status and piglet colostrum intake in early lactation. Livestock Science 163: 120-125.
CrossrefGoogle Scholar
Zaleski, H.M. and Hacker, R.R., 1993. Comparison of viability scoring and blood gas analysis as measures of piglet viability. Canadian Journal of Animal Science 73: 649-653.
CrossrefGoogle Scholar

Related titles:

Selenium in pig nutrition and health Vitagenes in avian biology and poultry health Cover image The suckling and weaned piglet Cover image The value of fibre Cover image Beneficial Microbes Cover image Poultry and pig nutrition Cover image Energy and Protein Metabolism and Nutrition Cover image Selenium in poultry nutrition and health Cover image INRA feeding system for ruminants Cover image Feed evaluation science Cover image Insects as food and feed: from production to consumption Cover image Phytate destruction - consequences for precision animal nutrition

New titles

Institutional Offers

For institutional orders, please contact [email protected].

Purchase Options