Cover Image

The suckling and weaned piglet



Published: 2020  Pages: 312

eISBN: 978-90-8686-894-0 | ISBN: 978-90-8686-343-3

Book Type: Edited Collection
Alexopoulos, J.G., Lines, D.S., Hallett, S. and Plush, K.J., 2018. A review of success factors for piglet fostering in lactation. Animals 8: 38.
CrossrefGoogle Scholar
Alonso-Spilsbury, M., Mota-Rojas, D., Villanueva-García, D., Martínez-Burnes, J., Orozco, H., Ramírez-Necoechea, R., Mayagoitia, A.L. and Trujillo, M.E., 2005. Perinatal asphyxia pathophysiology in pig and human: a review. Animal Reproduction Science 90: 1-30.
CrossrefGoogle Scholar
Alvarenga, A.L.N., Chiarini-Garcia, H., Cardeal, P.C., Moreira, L.P., Foxcroft, G.R., Fontes, D.O. and Almeida, F.R.C.L., 2013. Intra-uterine growth retardation affects birthweight and postnatal development in pigs, impairing muscle accretion, duodenal mucosa morphology and carcass traits. Reproduction, Fertility and Development 25: 387-395.
CrossrefGoogle Scholar
Amdi, C., Hansen, C.F., Krogh, U., Oksbjerg, N. and Theil, P.K., 2013a. Less brain sparing occurs in severe intrauterine growth-restricted piglets born to sows fed palm fatty acid distillate. In: Manipulating Pig Production XIV. APSA Biennial Conference. November 24-27, 2013. Melbourne, Victoria, Australia, pp. 125.
Google Scholar
Amdi, C., Jensen, L.L., Oksbjerg, N. and Hansen, C.F., 2017a. Supplementing newborn intrauterine growth restricted piglets with a bolus of porcine colostrum raises rectal temperatures one degree Celsius. Journal of Animal Science 95: 2968-2976.
Google Scholar
Amdi, C., Klarlund, M.V., Hales, J., Thymann, T. and Hansen, C.F., 2016. Intrauterine growthrestricted piglets have similar gastric emptying rates but lower rectal temperatures and altered blood values when compared with normal-weight piglets at birth. Journal of Animal Science 94: 4583-4590.
CrossrefGoogle Scholar
Amdi, C., Krogh, U., Flummer, C., Oksbjerg, N., Hansen, C.F. and Theil, P.K., 2013b. Intrauterine growth restricted piglets defined by their head shape ingest insufficient amounts of colostrum. Journal of Animal Science 91: 5605-5613.
CrossrefGoogle Scholar
Amdi, C., Lynegaard, J.C., Thymann, T. and Williams, A.R., 2020. Intrauterine growth restriction in piglets alters blood cell counts and impairs cytokine responses in peripheral mononuclear cells 24 days post-partum. Scientific Reports 10: 4683.
CrossrefGoogle Scholar
Amdi, C., Moustsen, V.A., Oxholm, L.C., Baxter, E.M., Sørensen, G., Eriksson, K.B., Diness, L.H., Nielsen, M.F. and Hansen, C.F., 2017b. Comparable cortisol, heart rate and milk let-down in nurse sows and non-nurse sows. Livestock Science 198: 174-181.
CrossrefGoogle Scholar
Andersen, H.L. and Pedersen, L.J., 2016. Effect of radiant heat at the birth site in farrowing crates on hypothermia and behaviour in neonatal piglets. Animal 10: 128-134.
CrossrefGoogle Scholar
Andersen, I.L., Berg, S. and Bøe, K.E., 2005. Crushing of piglets by the mother sow (Sus scrofa) – purely accidental or a poor mother? Applied Animal Behaviour Science 93: 229-243.
CrossrefGoogle Scholar
Andersen, I.L., Haukvik, I.A. and Bøe, K.E., 2009. Drying and warming immediately after birth may reduce piglet mortality in loose-housed sows. Animal 3: 592-597.
CrossrefGoogle Scholar
Andersen, I.L., Nævdal, E. and Bøe, K.E., 2011. Maternal investment, sibling competition, and offspring survival with increasing litter size and parity in pigs (Sus scrofa). Behavioral Ecology and Sociobiology 65: 1159-1167.
CrossrefGoogle Scholar
Andersen, I.L., Tajet, G.M., Haukvik, I.A., Kongsrud, S. and Bøe, K.E., 2007. Relationship between postnatal piglet mortality, environmental factors and management around farrowing in herds with loose-housed, lactating sows. Acta Agriculturae Scandinaviae Section A 57: 38-45.
CrossrefGoogle Scholar
Andersson, E., Frössling, J., Engblom, L., Algers, B. and Gunnarsson, S., 2015. Impact of litter size on sow stayability in Swedish commercial piglet producing herds. Acta Veterinaria Scandinavica 58: 31.
CrossrefGoogle Scholar
Azain, M.J., Tomkins, T., Sowinski, J.S., Arentson, R.A. and Jewell, D.E., 1996. Effect of supplemental pig milk replacer on litter performance: seasonal variation in response. Journal of Animal Science 74: 2195-2202.
CrossrefGoogle Scholar
Balzani, A., Cordell, H.J. and Edwards, S.A., 2016. Relationship of sow udder morphology with piglet suckling behaviour and teat access. Theriogenology 86: 1913-1920.
CrossrefGoogle Scholar
Bandrick, M., Pieters, M., Pijoan, C., Baidoo, S.K. and Molitor, T.W., 2011. Effect of cross-fostering on transfer of maternal immunity to Mycoplasma hyopneumoniae to piglets. Veterinary Record 168: 100. Bartol, F.F., Wiley, A.A. and Bagnell, C.A., 2008. Epigenetic programming of porcine endometrial function and the lactocrine hypothesis. Reproduction in Domestic Animals 43: 273-279.
Google Scholar
Bartol, F.F., Wiley, A.A., George, A.F., Miller, D.J. and Bagnell, C.A., 2017. Physiology and endocrinology symposium: postnatal reproductive development and the lactocrine hypothesis. Journal of Animal Science 95: 2200-2210.
Google Scholar
Bartol, F.F., Wiley, A.A., Miller, D.J., Silva, A.J., Roberts, K.E., Davolt, M.L.P., Chen, J.C., Frankshun, A.L., Camp, M.E., Rahman, K.M. and Vallet, J.L., 2013. Lactation Biology Symposium: lactocrine signaling and developmental programming. Journal of Animal Science 91: 696-705.
CrossrefGoogle Scholar
Bauer, R., Walter, B., Hoppe, A., Gaser, E., Lampe, V., Kauf, E. and Zwiener, U., 1998a. Body weight distribution and organ size in newborn swine (Sus scrofa domestica) – a study describing an animal model for asymmetrical intrauterine growth retardation. Experimental Toxicology and Pathology 50: 59-65.
CrossrefGoogle Scholar
Bauer, R., Walter, B., Gaser, E., Rösel, T., Kluge, H. and Zwiener, U., 1998b. Cardiovascular function and brain metabolites in normal weight and intrauterine growth restricted newborn piglets – effect of mild hypoxia. Experimental Toxicology and Pathology 50: 294-300.
CrossrefGoogle Scholar
Baxter, E.M. and Edwards, S.A., 2018. Piglet mortality and morbidity: inevitable or unacceptable? In: Spinka, M. (ed.) Advances in pig welfare. Woodhead Publishing, Cambridge, UK, pp. 73-100.
Google Scholar
Baxter, E.M., Andersen, I.L. and Edwards, S.A., 2018. Sow welfare in the farrowing crate and alternatives. Chapter 2. In: Spinka, M. (ed.) Advances in pig welfare. Woodhead Publishing, Cambridge, UK, pp. 27-72.
Google Scholar
Baxter, E.M., Jarvis, S., D’Eath, R.B., Ross, D.W., Robson, S.K., Farish, M., Nevison, I.M., Lawrence, A.B. and Edwards, S.A., 2008. Investigating the behavioural and physiological indicators of neonatal survival in pigs. Theriogenology 69: 773-783.
CrossrefGoogle Scholar
Baxter, E.M., Lawrence, A.B. and Edwards, S.A., 2011. Alternative farrowing systems: design criteria for farrowing systems based on the biological needs of sows and piglets. Animal 5: 580-600.
CrossrefGoogle Scholar
Baxter, E.M., Lawrence, A.B. and Edwards, S.A., 2012. Alternative farrowing accommodation: welfare and economic aspects of existing farrowing and lactation systems for pigs. Animal 6: 96-117.
CrossrefGoogle Scholar
Baxter, E.M., Rutherford, K.M.D., D’Eath, R.B., Arnott, G., Turner, S.P., Sandøe, P., Moustsen, V.A., Thorup, F., Edwards, S.A. and Lawrence, A.B., 2013. The welfare implications of large litter size in the domestic pig II: management factors. Animal Welfare 22: 219-238.
CrossrefGoogle Scholar
Benevenga, N.J., Steinman-Goldsworthy, J.K., Crenshaw, T.D. and Odle, J., 1989. Utilization of medium-chain triglycerides by neonatal piglets: I. Effects on milk consumption and body fuel utilization. Journal of Animal Science 67: 3331-3339.
CrossrefGoogle Scholar
Bergman, P., Gröhn, Y.T., Rajala-Schultz, P., Virtala, A.M., Oliviero, C., Peltoniemi, O. and Heinonen, M., 2018. Sow removal in commercial herds: Patterns and animal level factors in Finland. Preventive Veterinary Medicine 159: 30-39.
CrossrefGoogle Scholar
Berthon, D., Herpin, P. and Le Dividich, J., 1994. Shivering thermogenesis in the neonatal pig. Journal of Thermal Biology 19: 413-418.
CrossrefGoogle Scholar
Berthon, D., Herpin, P., Duchamp, C., Dauncey, M.J. and Le, J.D., 1993. Modification of thermogenic capacity in neonatal pigs by changes in thyroid status during late gestation. Journal of developmental Physiology 19: 253-261.
Google Scholar
Biensen, N.J., Von Borell, E.H. and Ford, S.P., 1996. Effects of space allocation and temperature on periparturient maternal behaviours, steroid concentrations, and piglet growth rates. Journal of Animal Science 74: 2641-2648.
CrossrefGoogle Scholar
Black, J.L., Mullan, B.P., Lorschy, M.L. and Giles, L.R., 1993. Lactation in the sow during heat stress. Livestock Production Science 35: 153-170.
CrossrefGoogle Scholar
Blackshaw, J.K. and Hagelsø, A.M., 1990. Getting-up and lying-down behaviours of loose-housed sows and social contacts between sows and piglets during day 1 and day 8 after parturition. Applied Animal Behaviour Science 25: 61-70.
CrossrefGoogle Scholar
Blackshaw, J.K., Swain, A.J., Blackshaw, A.W., Thomas, F.J.M. and Gillies, K.J., 1997. The development of playful behaviour in piglets from birth to weaning in three farrowing environments. Applied Animal Behaviour Science 55: 37-49.
CrossrefGoogle Scholar
Bolhuis, J.E., Raats-Van den Boogaard, A.M.E., Hoofs, A.I.J. and Soede, N.M., 2018. Effects of loose housing and the provision of alternative nesting material on peri-partum sow behaviour and piglet survival. Applied Animal Behaviour Science 202: 28-33.
CrossrefGoogle Scholar
Bonde, M., 2008. Prevalence of decubital shoulder lesions in Danish sow herds. Internal Report 12, University of Aarhus, Faculty of Agricultural Sciences, Aarhus, Denmark, 8 pp.
Google Scholar
Bruininx, E.M.A.M., Binnendijk, G.P., Van der Peet-Schwering, C.M.C., Schrama, J.W., Den Hartog, L.A., Everts, H. and Beynen, A.C., 2002. Effect of creep feed consumption on individual feed intake characteristics and performance of group-housed weanling pigs. Journal of Animal Science 80: 1413-1418.
CrossrefGoogle Scholar
Cabezon, F.A., Schinckel, A.P., Smith, A.J., Marchant-Forde, J.N., Johnson, J.S. and Stwalley, R.M., 2017. Initial evaluation of floor cooling on lactating sows under acute heat stress. The Professional Animal Scientist 33: 254-260.
Google Scholar
Cabrera, R.A., Boyd, R.D., Jungst, S.B., Wilson, E.R., Johnston, M.E., Vignes, J.L. and Odle, J., 2010. Impact of lactation length and piglet weaning weight on long-term growth and viability of progeny. Journal of Animal Science 88: 2265-2276.
CrossrefGoogle Scholar
Campos, P.H.R.F., Silva, B.A.N., Donzele, J.L., Oliveira, R.F.M. and Knol, E.F., 2012. Effects of sow nutrition during gestation on within-litter birth weight variation: a review. Animal 6: 797-806.
CrossrefGoogle Scholar
Casellas, J., Casas, X., Piedrafita, J. and Manteca, X., 2005. Effect of medium-and long-chain triglyceride supplementation on small newborn-pig survival. Preventive Veterinary Medicine 67: 213-221.
CrossrefGoogle Scholar
Chen, J.C., Frankshun, A.L., Wiley, A.A., Miller, D.J., Welch, K.A., Ho, T.Y., Bartol, F.F. and Bagnell, C.A., 2011. Milk-borne lactocrine-acting factors affect gene expression patterns in the developing neonatal porcine uterus. Reproduction 141: 675.
CrossrefGoogle Scholar
Chevaux, E., Sacy, A., Le Treut, Y. and Martineau, G., 2010. Intrauterine growth retardation (IUGR): morphological and behavioural description. In: Proceedings of the 21st IPVS Congress, Vancouver, Canada, 209 pp.
Google Scholar
Christison, G.I., Wenger, I.I. and Follensbee, M.E., 1997. Teat seeking success of newborn piglets after drying or warming. Canadian Journal of Animal Science 77: 317-319.
CrossrefGoogle Scholar
Cranwell, P.D., 1995. Development of the neonatal gut. In: Varley, M.A. (ed.) The neonatal pig: development and survival. CAB International, Wallingford, UK, pp. 99-154.
Google Scholar
De Leeuw, J.A., Bolhuis, J.E., Bosch, G. and Gerrits, W.J.J., 2008. Effects of dietary fibre on behaviour and satiety in pigs: symposium on ‘Behavioural nutrition and energy balance in the young’. Proceedings of the Nutrition Society 67: 334-342.
CrossrefGoogle Scholar
De Vos, M., Huygelen, V., Willemen, S., Fransen, E., Casteleyn, C., Van Cruchten, S., Michiels, J. and Van Ginneken, C., 2014. Artificial rearing of piglets: effects on small intestinal morphology and digestion capacity. Livestock Science 159: 165-173.
CrossrefGoogle Scholar
D’Eath, R.B. and Lawrence, A.B., 2004. Early life predictors of the development of aggressive behaviour in the domestic pig. Animal Behaviour 67: 501-509.
CrossrefGoogle Scholar
Decaluwé, R., Maes, D., Declerck, I., Cools, A., Wuyts, B., De Smet, S. and Janssens, G.P.J., 2013. Changes in back fat thickness during late gestation predict colostrum yield in sows. Animal 7: 1999-2007.
CrossrefGoogle Scholar
Declerck, I., Dewulf, J., Decaluwé, R. and Maes, D., 2016. Effects of energy supplementation to neonatal (very) low birth weight piglets on mortality, weaning weight, daily weight gain and colostrum intake. Livestock Science 183: 48-53.
CrossrefGoogle Scholar
Declerck, I., Sarrazin, S., Dewulf, J. and Maes, D., 2017. Sow and piglet factors determining variation of colostrum intake between and within litters. Animal 11: 1336-1343.
CrossrefGoogle Scholar
Devillers, N., Le Dividich, J. and Prunier, A., 2011. Influence of colostrum intake on piglet survival and immunity. Animal 5: 1605-1612.
CrossrefGoogle Scholar
Díaz, J.A.C., Diana, A., Boyle, L.A., Leonard, F.C., McElroy, M., McGettrick, S., Moriarty, J. and Manzanilla, E.G. 2017. Delaying pigs from the normal production flow is associated with health problems and poorer performance. Porcine Health Management 3: 13.
CrossrefGoogle Scholar
Donovan, T.S. and Dritz, S.S., 2000. Effect of split nursing on variation in pig growth from birth to weaning. Journal of the American Veterinary Medical Association 217: 79-81.
CrossrefGoogle Scholar
Douglas, S.L., Edwards, S.A. and Kyriazakis, I., 2014. Management strategies to improve the performance of low birth weight pigs to weaning and their long term consequences. Journal of Animal Science 92: 2280-2288.
CrossrefGoogle Scholar
Douglas, S.L., Edwards, S.A., Sutcliffe, E., Knap, P.W. and Kyriazakis, I., 2013. Identification of risk factors associated with poor lifetime growth performance in pigs. Journal of Animal Science 91: 4123-4132.
CrossrefGoogle Scholar
Dunshea, F.R., Boyce, J.M. and King, R.H., 1998. Effect of supplemental nutrients on the growth performance of sucking pigs. Australian Journal of Agricultural Research 49: 883-888.
CrossrefGoogle Scholar
Dunshea, F.R., Kerton, D.J., Eason, P.J. and King, R.H., 1999. Supplemental skim milk before and after weaning improves growth performance of pigs. Australian Journal of Agricultural Research 50: 1165-1170.
CrossrefGoogle Scholar
Edwards, S.A. and Baxter, E.M., 2015. Piglet mortality: causes and prevention. In: Farmer, C. (ed.) The gestating and lactating sow. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 649-653.
Google Scholar
Edwards, S.A., 2002. Perinatal mortality in the pig: environmental or physiological solutions? Livestock Production Science 78(1): 3-12.
CrossrefGoogle Scholar
Edwards, S.A., Matheson, S.M. and Baxter, E.M., 2019. Genetic influences on intra-uterine growth retardation of piglet and management interventions for low birth weight piglets. In: Nutrition of hyperprolific sows. Libro Novus, Saint Charles, MO, USA, pp. 141-166.
Google Scholar
Engelsmann, M.N., Hansen, C.F., Nielsen, M.N., Kristensen, A.R. and Amdi, C., 2019. Glucose injections at birth, warmth and placing at a nurse sow improve the growth of IUGR piglets. Animals 9(8): 519.
CrossrefGoogle Scholar
European Union (EU), 2001. Commission directive 2001/93/EC of 9 November 2001amending Directive 91/630/EEC laying down minimum standards for the protection of pigs. Official Journal of the European Union L 316: 36-38. Available at: https://tinyurl.com/r2ep2cc. Google Scholar
European Union (EU), 2009. Council Directive 2008/120/EC of 18 December 2008 laying down minimum standards for the protection of pig. Official Journal of the European Union L 47: 5-13. Available at: https://tinyurl.com/y4kns95x. Google Scholar
Farmer, C. and Edwards, S., 2020. The neonatal pig: developmental influences on vitality. In: Farmere, C. (ed.) The suckling and weaned piglet. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 9-39.
Google Scholar
Ferret-Bernard, S. and Le Huërou-Luron, I., 2020. Development of the intestinal immune system in young pigs – role of the microbial environment. In: Farmere, C. (ed.) The suckling and weaned piglet. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 159-177.
Google Scholar
Feyera, T., Højgaard, C.K., Vinther, J., Bruun, T.S. and Theil, P.K., 2017. Dietary supplement rich in fiber fed to late gestating sows during transition reduces rate of stillborn piglets. Journal of Animal Science 95(12): 5430-5438.
CrossrefGoogle Scholar
Feyera, T., Pedersen, T., Krogh, U., Foldager, L. and Theil, P., 2018. Impact of sow energy status during farrowing on farrowing kinetics, frequency of stillborn piglets, and farrowing assistance. Journal of Animal Science 96: 2320-2331.
CrossrefGoogle Scholar
Foxcroft, G.R., 2008. Hyperprolificacy and acceptable post-natal development – a possible contradiction. Advances in Pork Production 19: 205-211.
Google Scholar
Frei, D., Würbel, H., Wechsler, B., Gygax, L., Burla, J.B. and Weber, R., 2018. Can body nosing in artificially reared piglets be reduced by sucking and massaging dummies? Applied Animal Behaviour Science 202: 20-27.
CrossrefGoogle Scholar
Gieling, E.T., Park, S.Y., Nordquist, R.E. and Van der Staay, F.J., 2012. Cognitive performance of low- and normal-birth-weight piglets in a spatial hole-board discrimination task. Pediatric Research 71: 71-76.
CrossrefGoogle Scholar
Gluckman, P.D., 2004. The fetal matrix: evolution, development and disease. Cambridge University Press, Cambridge, UK.
Google Scholar
Gondret, F., Lefaucheur, L., Louveau, I., Lebret, B., Pichodo, X. and Le Cozler, Y., 2006. Influence of piglet birth weight on postnatal growth performance, tissue lipogenic capacity and muscle histological traits at market weight. Livestock Production Science 93: 137-146.
CrossrefGoogle Scholar
Hales, J., Moustsen, V.A., Devreese, A.M., Nielsen, M.B.F. and Hansen, C.F., 2015. Comparable farrowing progress in confined and loose housed hyperprolific sows. Livestock Science 171: 64-72.
CrossrefGoogle Scholar
Hales, J., Moustsen, V.A., Nielsen, M.B.F. and Hansen, C.F., 2013. Individual physical characteristics of neonatal piglets affect pre-weaning survival of piglets born in a non-crated system. Journal of Animal Science 91: 4991-5003.
CrossrefGoogle Scholar
Hales, J., Moustsen, V.A., Nielsen, M.B.F. and Hansen, C.F., 2014. Higher pre-weaning mortality in free farrowing pens compared with farrowing crates in three commercial pig farms. Animal 8: 113-120.
CrossrefGoogle Scholar
Hansen, C., 2019. Landsgennemsnit for produktivitet I produktionen af grise, 2018. Report #1920. SEGES Pig Production, Denmark. Available at: https://svineproduktion.dk/publikationer/kilder/notater/2019/1920. Google Scholar
Hansen, C.F., Hales, J., Amdi, C. and Moustsen, V.A., 2019. Intrauterine growth-restricted piglets defined by their head shape have impaired survival and growth during the suckling period. Animal Production Science 59: 1056-1062.
CrossrefGoogle Scholar
Hasan, S., Orro, T., Valros, A., Junnikkala, S., Peltoniemi, O. and Oliviero, C., 2019. Factors affecting sow colostrum yield and composition, and their impact on piglet growth and health. Livestock Science 227: 60-67.
CrossrefGoogle Scholar
Heo, K.N., Lin, X., Han, I.K. and Odle, J., 2002. Medium-chain fatty acids but not L-carnitine accelerate the kinetics of [14C]triacylglycerol utilization by colostrum-deprived newborn pigs. Journal of Nutrition 132: 1989-1994.
CrossrefGoogle Scholar
Herpin, P., Damon, M. and Le Dividich, J., 2002. Development of thermoregulation and neonatal survival in pigs. Livestock Production Science 78: 25-45.
CrossrefGoogle Scholar
Horrell, I. and Bennett, J., 1981. Disruption of teat preferences and retardation of growth following cross-fostering of 1-week-old pigs. Animal Science 33: 99-106.
CrossrefGoogle Scholar
Jarvis, S., Calvert, S.K., Stevenson, J., Vanleeuwen, N. and Lawrence, A.B., 2002. Pituitary-adrenal activation in pre-parturient pigs (Sus scrofa) is associated with behavioural restriction due to lack of space rather than nesting substrate. Animal Welfare 11: 371-384.
Google Scholar
Jensen, P., 1988. Maternal behaviour and mother – young interactions during lactation in freeranging domestic pigs. Applied Animal Behaviour Science 20: 297-308.
CrossrefGoogle Scholar
Jeon, J.H., Yeon, S.C., Choi, Y.H., Min, W., Kim, S., Kim, P.J. and Chang, H.H., 2006. Effects of chilled drinking water on the performance of lactating sows and their litters during high ambient temperatures under farm conditions. Livestock Science 105: 86-93.
CrossrefGoogle Scholar
Jiang, L., Feng, C., Tao, S., Zuo, B., Han, D. and Wang, J., 2019. Maternal imprinting of the neonatal microbiota colonization in intrauterine growth restricted piglets: a review. Journal of Animal Science and Biotechnology 10: 88.
CrossrefGoogle Scholar
Kammersgaard, T.S., Malmkvist, J. and Pedersen, L.J., 2013. Infrared thermography – a noninvasive tool to evaluate thermal status of neonatal pigs based on surface temperature. Animal 7: 2026-2034.
CrossrefGoogle Scholar
Kirkden, R.D., Broom, D.M. and Andersen, I.L., 2013. Piglet mortality: the impact of induction of farrowing using prostaglandins and oxytocin. Animal Reproduction Science 138: 14-24.
CrossrefGoogle Scholar
Klobasa, F., Werhahn, E. and Butler, J.E., 1987. Composition of sow milk during lactation. Journal of Animal Science 64 1458-1466.
CrossrefGoogle Scholar
Kobek-Kjeldager, C., Moustsen, V.A., Theil, P.K. and Pedersen, L.J., 2019. Effect of litter size, milk replacer and housing on production results of hyper-prolific sows. Animal 14: 824-833.
CrossrefGoogle Scholar
Kyriazakis I. and Edwards, S.A., 1986. The effect of ‘split-suckling’ on behaviour and performance of piglets. Applied Animal Behaviour Science 16: 92.
CrossrefGoogle Scholar
Langendijk, P., Fleuren, M., Van Hees, H. and Van Kempen, T., 2018. The course of parturition affects piglet condition at birth and survival and growth through the nursery phase. Animals 8: 60.
CrossrefGoogle Scholar
Larsen, M.L.V. and Pedersen, L.J., 2015. Does light attract piglets to the creep area? Animal 9: 1032-1037.
CrossrefGoogle Scholar
Latham, N.R. and Mason, G.J., 2008. Maternal deprivation and the development of stereotypic behaviour. Applied Animal Behaviour Science 110: 84-108. https://doi.org/10.1016/j.applanim.2007.03.026 Google Scholar
Lawrence, A.B., McLean, K.A., Jarvis, S., Gilbert, C.L. and Petherick, J.C., 1997. Stress and parturition in the pig. Reproduction in Domestic Animals 32: 231-236.
CrossrefGoogle Scholar
Le Dividich, J., Mormede, P., Catheline, M. and Caritez, J.C., 1991. Body-composition and cold resistance of the neonatal pig from European (Large White) and Chinese (Meishan) breeds. Biology of the Neonate 59: 268-277.
CrossrefGoogle Scholar
Le Dividich, J., Rooke, J.A. and Herpin, P., 2005. Nutritional and immunological importance of colostrum for the new-born pig. Journal of Agricultural Science 143: 469-485.
CrossrefGoogle Scholar
Lepine, A.J., Boyd, R.D., Welch, J.A. and Roneker, K.R., 1989. Effect of colostrum or mediumchain triglyceride supplementation on the pattern of plasma glucose, non-esterified fatty acids and survival of neonatal pigs. Journal of Animal Science 67: 983-990.
CrossrefGoogle Scholar
Lynegaard, J.C., Hansen, C.F., Kristensen, A.R. and Amdi, C., 2019. Body composition and organ development of intra-uterine growth restricted pigs at weaning. Animal 14: 322-329.
CrossrefGoogle Scholar
Malmkvist, J., Damgaard, B.M., Pedersen, L.J., Jørgensen, E., Thodberg, K., Chaloupková, H. and Bruckmaier, R.M., 2009. Effects of thermal environment on hypothalamic-pituitary-adrenal axis hormones, oxytocin, and behavioural activity in periparturient sows. Journal of Animal Science 87: 2796-2805.
CrossrefGoogle Scholar
Malmkvist, J., Pedersen, L.J., Damgaard, B.M., Thodberg, K., Jørgensen, E. and Labouriau, R., 2006. Does floor heating around parturition affect the vitality of piglets born to loose housed sows? Applied Animal Behaviour Science 99: 88-105.
CrossrefGoogle Scholar
Malmkvist, J., Pedersen, L.J., Kammersgaard, T.S. and Jørgensen, E., 2012. Influence of thermal environment on sows around farrowing and during the lactation period. Journal of Animal Science 90: 3186-3199.
CrossrefGoogle Scholar
Marco, E., 2018. How to deal with disease in large litters. Proceedings of the 10th European Symposium on Porcine Health and Management (ESPHM). Barcelona, Spain, pp. 48-52.
Google Scholar
Matheson, S.M., Walling, G.A. and Edwards, S.A., 2018. Genetic selection against intrauterine growth retardation in piglets: a problem at the piglet level with a solution at the sow level. Genetics Selection Evolution 50: 46.
CrossrefGoogle Scholar
Meunier-Salaün, M.C., Edwards, S.A. and Robert, S., 2001. Effect of dietary fibre on the behaviour and health of the restricted fed sow. Animal Feed Science and Technology 90: 53-69.
CrossrefGoogle Scholar
Miller, Y., Collins, A., Smits, R., Thomson, P. and Holyoake, P., 2012. Providing supplemental milk to piglets pre-weaning improves the growth but not survival of gilt progeny compared with sow progeny. Journal of Animal Science 90: 5078-5085.
CrossrefGoogle Scholar
Moreira, L.P., Menegat, M.B., Barros, G.P., Bernardi, M.L., Wentz, I. and Bortolozzo, F.P., 2017. Effects of colostrum, and protein and energy supplementation on survival and performance of low-birth-weight piglets. Livestock Science 202: 188-193.
CrossrefGoogle Scholar
Morise, A., Louveau, I. and Le Huerou-Luron, I., 2008. Growth and development of adipose tissue and gut and related endocrine status during early growth in the pig: impact of low birth weight. Animal 2: 73-83.
CrossrefGoogle Scholar
Mount, L.E., 1963. Environmental temperature preferred by the young pig. Nature 199(4899): 1212-1213.
CrossrefGoogle Scholar
Mount, L.E., 1967. The heat loss from new-born pigs to the floor. Research in Veterinary Science 8: 175-186.
CrossrefGoogle Scholar
Moustsen, V.A. and Poulsen, H.L., 2004. Anbefalinger vedr. dimensioner på fareboks og kassesti. Landsudvalget for Svin, Danske Slagterier, Notat nr. 414
Google Scholar
Muns, R., Malmkvist, J., Larsen, M.L.V., Sørensen, D. and Pedersen, L.J., 2016. High environmental temperature around farrowing induced heat stress in crated sows. Journal of Animal Science 94: 377-384.
CrossrefGoogle Scholar
Muns, R., Manteca, X. and Gasa, J., 2015. Effect of different management techniques to enhance colostrum intake on piglets’ growth and mortality. Animal Welfare 24: 185-192.
CrossrefGoogle Scholar
Muns, R., Nuntapaitoon, M. and Tummaruk, P., 2017. Effect of oral supplementation with different energy boosters in newborn piglets on pre-weaning mortality, growth and serological levels of IGF-I and IgG. Journal of Animal Science 95: 353-360.
Google Scholar
Muns, R., Silva, C., Manteca, X. and Gasa, J., 2014. Effect of cross-fostering and oral supplementation with colostrums on performance of newborn piglets. Journal of Animal Science 92: 1193-1199.
CrossrefGoogle Scholar
Neal, S.M. and Irvin, K.H., 1991. The effects of cross-fostering pigs on survival and growth. Journal of Animal Science 69: 41-46.
CrossrefGoogle Scholar
Neil, M., Ogle, B. and Anner, K., 1996. A two-diet system and ad libitum lactation feeding of the sow 1. Sow performance. Animal Science 62: 337-347.
CrossrefGoogle Scholar
Newberry, R.C. and Swanson, J.C., 2008. Implications of breaking mother-young social bonds. Applied Animal Behaviour Science 110: 3-23.
CrossrefGoogle Scholar
Nielsen, B., Su, G., Lund, M.S. and Madsen, P., 2013. Selection for increased number of piglets at d 5 after farrowing has increased litter size and reduced piglet mortality. Journal of Animal Science 91: 2575-2582.
CrossrefGoogle Scholar
Nissen, P.M. and Oksbjerg, N., 2011. Birth weight and postnatal dietary protein level affect performance, muscle metabolism and meat quality in pigs. Animal 5: 1382-1389.
CrossrefGoogle Scholar
Ocepek, M. andersen-Ranberg, I., Edwards, S.A., Fredriksen, B., Framstad, T. and Andersen, I.L., 2016. Can a super sow be a robust sow? Consequences of litter investment in purebred and crossbred sows of different parities. Journal of Animal Science 94: 3550-3560.
CrossrefGoogle Scholar
Oliviero, C., Heinonen, M., Valros, A. and Peltoniemi, O., 2010. Environmental and sow-related factors affecting the duration of farrowing. Animal Reproduction Science 119: 85-91.
CrossrefGoogle Scholar
Oliviero, C., Junnikkala, S. and Peltoniemi, O., 2019. The challenge of large litters on the immune system of the sow and the piglets. Reproduction in Domestic Animals 54: 12-21.
CrossrefGoogle Scholar
Oostindjer, M., Bolhuis, J.E., Mendl, M., Held, S., Gerrits, W., Van den Brand, H. and Kemp, B., 2010. Effects of environmental enrichment and loose housing of lactating sows on piglet performance before and after weaning. Journal of Animal Science 88: 3554-3562.
CrossrefGoogle Scholar
Oostindjer, M., Kemp, B., Van den Brand, H. and Bolhuis, J.E., 2014. Facilitating ‘learning from mom how to eat like a pig’ to improve welfare of piglets around weaning. Applied Animal Behaviour Science 160: 19-30.
CrossrefGoogle Scholar
Orgeur, P., Hay, M., Mormède, P., Salmon, H., Le Dividich, J., Nowak, R., Schaal, B. and Lévy, F., 2001. Behavioural, growth and immune consequences of early weaning in one-week-old largewhite piglets. Reproduction, Nutrition and Development 41: 321-332.
CrossrefGoogle Scholar
Papadopoulos, G.A., Vanderhaeghe, C., Janssens, G.P., Dewulf, J. and Maes, D.G., 2010. Risk factors associated with post-partum dysgalactia syndrome in sows. The Veterinary Journal 184: 167-171.
CrossrefGoogle Scholar
Pedersen, L.J. and Jensen, T., 2008. The effect of late introduction to the farrowing environment (crates and pens) on the progress of parturition and maternal behaviour. Journal of Animal Science 86: 2730-2737.
CrossrefGoogle Scholar
Pedersen, L.J., Berg, P., Jørgensen, G. and Andersen, I.L., 2011a. Neonatal piglet traits of importance for survival in crates and indoor pens. Journal of Animal Science 89: 1207-1218.
CrossrefGoogle Scholar
Pedersen, L.J., Larsen, M.L.V. and Malmkvist, J., 2016. The ability of different thermal aids to reduce hypothermia in neonatal piglets. Journal of Animal Science 94: 2151-2159.
CrossrefGoogle Scholar
Pedersen, L.J., Malmkvist, J. and Andersen, H.M.L., 2013. Housing of sows during farrowing: a review on pen design, welfare and productivity. Livestock housing: modern management to ensure optimal health and welfare of farm animals. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 285-297.
Google Scholar
Pedersen, M.L., Moustsen, V.A., Nielsen, M.B.F. and Kristensen, A.R., 2011b. Improved udder access prolongs duration of milk letdown and increases piglet weight gain. Livestock Science 140: 253-261.
CrossrefGoogle Scholar
Peltoniemi, O.A.T. and Oliviero, C., 2015. Housing, management and environment during farrowing and early lactation. In: Farmer, C. (ed.) The gestating and lactating sow. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 77-84.
Google Scholar
Perin, J., Gaggini, T.S., Manica, S., Magnabosco, D., Bernardi, M.L., Wentz, I. and Bortolozzo, F.P., 2016. Evaporative snout cooling system on the performance of lactating sows and their litters in a subtropical region. Ciência Rural 46: 342-347.
CrossrefGoogle Scholar
Piccolo, B.D., Mercer, K.E., Bhattacharyya, S., Bowlin, A.K., Saraf, M.K., Pack, L., Chintapalli, S.V., Shankar, K., Adams, S.H. and Badger, T.M., 2017. Early postnatal diets affect the bioregional small intestine microbiome and ileal metabolome in neonatal pigs. Journal of Nutrition 147: 1499-1509.
CrossrefGoogle Scholar
Poletto, R., Steibel, J.P., Siegford, J.M. and Zanella, A.J., 2006. Effects of early weaning and social isolation on the expression of glucocorticoid and mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase 1 and 2 mRNAs in the frontal cortex and hippocampus of piglets. Brain Research 1067: 36-42.
CrossrefGoogle Scholar
Poonsuk, K. and Zimmerman, J., 2018. Historical and contemporary aspects of maternal immunity in swine. Animal Health Research Reviews 19: 31-45.
CrossrefGoogle Scholar
Poore, K.R. and Fowden, A.L., 2003. The effect of birth weight on hypothalamo-pituitary-adrenal axis function in juvenile and adult pigs. Journal of Physiology 547: 107-116.
CrossrefGoogle Scholar
Power, M.L. and Schulkin, J., 2013. Maternal regulation of offspring development in mammals is an ancient adaptation tied to lactation. Applied and Translational Genomics 2: 55-63.
CrossrefGoogle Scholar
Price, E.O., Hutson, G.D., Price, M.I. and Borgwardt, R., 1994. Fostering in swine as affected by age of offspring. Journal of Animal Science 72: 1697-1701.
CrossrefGoogle Scholar
Prims, S., Pintens, N., Vergauwen, H., Van Cruchten, S., Van Ginneken, C. and Casteleyn, C., 2017. Effect of artificial rearing of piglets on the volume densities of M cells in the tonsils of the soft palate and ileal Peyer’s patches. Veterinary Immunology and Immunopathology 184: 1-7.
CrossrefGoogle Scholar
Prunier, A., De Braganca, M.M. and Le Dividich, J., 1997. Influence of high ambient temperature on performance of reproductive sows. Livestock Production Science 52: 123-133.
CrossrefGoogle Scholar
Quesnel, H., Brossard, L., Valancogne, A. and Quiniou, N., 2008. Influence of some sow characteristics on within‐litter variation of piglet birth weight. Animal 2: 1842-1849.
CrossrefGoogle Scholar
Quesnel, H., Farmer, C. and Devillers, N., 2012. Colostrum intake: influence on piglet performance and factors of variation. Livestock Science 146: 105-114.
CrossrefGoogle Scholar
Quiniou, N. and Noblet, J., 1999. Influence of high ambient temperatures on performance of multiparous lactating sows. Journal of Animal Science 77: 2124-2134.
CrossrefGoogle Scholar
Rangstrup-Christensen, L., Krogh, M.A., Pedersen, L.J. and Sørensen, J.T., 2017. Sow-level risk factors for stillbirth of piglets in organic sow herds. Animal 11: 1078-1083.
CrossrefGoogle Scholar
Read, E., Baxter, E.M., Farish, M. and D’Eath, R.B., 2020. Trough half empty – pregnant sows are fed under half of their ad libitum intake. Animal Welfare 29: 151-162.
CrossrefGoogle Scholar
Rees, S., Mallard, C., Breen, S., Stringer, M., Cock, M. and Harding, R., 1998. Fetal brain injury following prolonged hypoxemia and placental insufficiency: a review. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 119: 653-660.
CrossrefGoogle Scholar
Rehfeldt, C. and Kuhn, G., 2006. Consequences of birthweight for postnatal performance and carcass quality in pigs as related to myogenesis. Journal of Animal Science 84: E113-123.
CrossrefGoogle Scholar
Rekiel, A., Więcek, J., Batorska, M. and Kulisiewicz, J., 2014. Effect of sow prolificacy and nutrition on pre- and post-natal growth of progeny – a review. Annals of Animal Science 14: 3-15.
CrossrefGoogle Scholar
Rioja-Lang, F.C., Seddon, Y.M. and Brown, J.A., 2018. Shoulder lesions in sows: a review of their causes, prevention, and treatment. Journal of Swine Health and Production 26: 101-107.
Google Scholar
Robert, S. and Martineau, G.P., 2001. Effects of repeated cross-fosterings on preweaning behaviour and growth performance of piglets and on maternal behaviour of sows. Journal of Animal Science 79: 88-93.
CrossrefGoogle Scholar
Roehe, R., Shrestha, N.P., Mekkawy, W., Baxter, E.M., Knap, P.W., Smurthwaite, K.M., Jarvis, S., Lawrence, A.B. and Edwards, S.A., 2010. Genetic parameters of piglet survival and birth weight from a two-generation crossbreeding experiment under outdoor conditions designed to disentangle direct and maternal effects. Journal of Animal Science 88: 1276-1285.
CrossrefGoogle Scholar
Rosvold, E.M., Kielland, C., Ocepek, M., Framstad, T., Fredriksen, B., Andersen-Ranberg, I., Næss, G. and Andersen, I.L., 2017. Management routines influencing piglet survival in loose-housed sow herds. Livestock Science 196: 1-6.
CrossrefGoogle Scholar
Roza, S.J., Steegers, E.A., Verburg, B.O., Jaddoe, V.W., Moll, H.A., Hofman, A., Verhulst, F.C. and Tiemeier, H., 2008. What is spared by foetal brain-sparing? Foetal circulatory redistribution and behavioural problems in the general population. American Journal of Epidemiology 168: 1145-1152.
CrossrefGoogle Scholar
Rutherford, K.M.D., Baxter, E.M., D’Eath, R.B., Turner, S.P., Arnott, G., Roehe, R., Ask, B., Sandøe, P., Moustsen, V.A., Thorup, F. and Edwards, S.A., 2013. The welfare implications of large litter size in the domestic pig I: biological factors. Animal Welfare 22: 199-218.
CrossrefGoogle Scholar
Rutherford, K.M.D., Donald, R.D., Arnott, G., Rooke, J.A., Dixon, L., Mehers, J.J.M., Turnbull, J. and Lawrence, A.B., 2012. Farm animal welfare: assessing risks attributable to the prenatal environment. Animal Welfare 21: 419-429.
CrossrefGoogle Scholar
Rzezniczek, M., Gygax, L., Wechsler, B. and Weber, R., 2015. Comparison of the behaviour of piglets raised in an artificial rearing system or reared by the sow. Applied Animal Behaviour Science 165: 57-65.
CrossrefGoogle Scholar
Schmitt, O., Baxter, E.M., Boyle, L.A. and O’Driscoll, K., 2019b. Nurse sow strategies in the domestic pig: II. Consequences for piglet growth, suckling behaviour and sow nursing behaviour. Animal 13: 590-599.
CrossrefGoogle Scholar
Schmitt, O., Baxter, E.M., Boyle, L.A. and O’Driscoll, K., 2019c. Nurse sow strategies in the domestic pig: I. Consequences for selected measures of sow welfare. Animal 13: 580-589.
CrossrefGoogle Scholar
Schmitt, O., Baxter, E.M., Lawlor, P.G., Boyle, L.A. and O’Driscoll, K., 2019a. A single dose of fatbased energy supplement to light birth weight pigs shortly after birth does not increase their survival and growth. Animals 9: 227.
CrossrefGoogle Scholar
Schmitt, O., O’Driscoll, K., Boyle, L.A. and Baxter, E.M., 2019d. Artificial rearing affects piglets pre-weaning behaviour, welfare and growth performance. Applied Animal Behaviour Science 210: 16-25.
CrossrefGoogle Scholar
Schmitt, O., O’Driscoll, K., Baxter, E.M. and Boyle, L.A., 2019e. Artificial rearing affects the emotional state and reactivity of pigs post-weaning. Animal Welfare 28: 433-442.
CrossrefGoogle Scholar
Smith, F., Clark, J.E., Overman, B.L., Tozel, C.C., Huang, J.H., Rivier, J.E.F., Blisklager, A.T. and Moeser, A.J., 2009. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. American Journal of Physiology – Gastrointestinal and Liver Physiology 298: 352-363. https://doi.org/10.1152/ajpgi.00081.2009 Google Scholar
Sørensen, J.T. and Pedersen, L.J., 2015. Omfanget af brugen af ammesøer og mulige tiltag til forbedring af deres velfærd. Institut for Husdyrvidenskab, DCA – Nationalt Center for Jordbrug og Fødevarer, Aarhus Universitet, Aarhus, Denmark.
Google Scholar
Sørensen, J.T., Rousing, T., Kudahl, A.B., Hansted, H.J. and Pedersen, L.J., 2016. Do nurse sows and foster litters have impaired animal welfare? Results from a cross-sectional study in sow herds. Animal 10: 681-686.
CrossrefGoogle Scholar
Stansbury, W.F., McGlone, J.J. and Tribble, L.F., 1987. Effects of season, floor type, air temperature and snout coolers on sow and litter performance. Journal of Animal Science 65: 1507-1513.
CrossrefGoogle Scholar
Stewart, T.S. and Diekman, M.A., 1989. Effect of birth and fraternal litter size and cross-fostering on growth and reproduction in swine. Journal of Animal Science 67: 635-640.
CrossrefGoogle Scholar
Straw, B.E., Dewey, C.E. and Bürgi, E.J., 1998. Patterns of crossfostering and piglet mortality on commercial US and Canadian swine farms. Preventive Veterinary Medicine 33: 83-89.
CrossrefGoogle Scholar
Swan, K.M., Peltoniemi, O.A.T., Munsterhjelm, C. and Valros, A., 2018. Comparison of nestbuilding materials in farrowing crates. Applied Animal Behaviour Science 203: 1-10.
CrossrefGoogle Scholar
Thorsen, C.K. and Pedersen, L.J., 2019. Metoder til forbedring af søer og pattegrises velfærd i store kuld som erstatning for brug af ammesøer. DCA – Nationalt center for fødevarer og jordbrug. Aarhus Universitet, Aarhus, Denmark,
Google Scholar
Thorsen, C.K., Schild, S.L.A., Rangstrup-Christensen, L., Bilde, T. and Pedersen, L.J., 2017. The effect of farrowing duration on maternal behaviour of hyperprolific sows in organic outdoor production. Livestock Science 204: 92-97.
CrossrefGoogle Scholar
Thorup, F., Wedel-Müller, R.L., Hansen, C.F., Kanitz, E., Tuchscherer, M., 2015. Neonatal mortality in piglets is more due to lack of energy than lack of immunoglobulins. In: International conference on pig welfare: Improving pig welfare – what are the ways forward? Copenhagen, Denmark, p. 84. Available at: https://curis.ku.dk/ws/files/137055997/2015_075_IPWC_Abstract.pdf. Google Scholar
Torrey, S. and Widowski, T.M., 2006. Is belly nosing redirected suckling behaviour? Applied Animal Behaviour Science 101: 288-304.
CrossrefGoogle Scholar
Touchette, K.J., Carroll, J.A., Allee, G.L., Matteri, R.L., Dyer, C.J., Beausang, L.A. and Zannelli, M.E., 2002. Effect of spray-dried plasma and lipopolysaccharide exposure on weaned pigs: I. Effects on the immune axis of weaned pigs. Journal of Animal Science 80: 494-501.
CrossrefGoogle Scholar
Tuboly, S., Bernath, S., Glavits, R. and Medveczky, I., 1988. Intestinal absorption of colostral lymphoid cells in newborn piglets. Veterinary Immunology and Immunopathology 20: 75-85.
CrossrefGoogle Scholar
Tuchscherer, M., Puppe, B., Tuchscherer, A. and Tiemann, U., 2000. Early identification of neonates at risk: traits of newborn piglets with respect to survival. Theriogenology 54: 371-388.
CrossrefGoogle Scholar
Valros, A.E., Rundgren, M., Špinka, M., Saloniemi, H., Rydhmer, L. and Algers, B., 2002. Nursing behaviour of sows during 5 weeks lactation and effects on piglet growth. Applied Animal Behaviour Science 76: 93-104.
CrossrefGoogle Scholar
Van Beirendonck, S., Schroijen, B., Bulens, A., Van Thielenab, J. and Driessena, B., 2015. A solution for high production numbers in farrowing units? In: Proceedings of the International Conference on Pig Welfare: improving pig welfare – what are the ways forward? April 29-30, 2015. Copenhagen, Denmark.
Google Scholar
Van den Brand, H., Van Enckevort, L.C.M., Van der Hoeven, E.M. and Kemp, B., 2009. Effects of dextrose plus lactose in the sows diet on subsequent reproductive performance and within litter birth weight variation. Reproduction in Domestic Animals 44: 884-888.
CrossrefGoogle Scholar
Van Dijk, A.J., Everts, H., Nabuurs, M.J.A., Margry, R.J.C.F. and Beynen, A.C., 2001. Growth performance of weanling pigs fed spray-dried animal plasma: a review. Livestock Production Science 68: 263-274.
CrossrefGoogle Scholar
Van Wagenberg, A.V., Van der Peet-Schwering, C.M.C., Binnendijk, G.P. and Claessen, P.J.P.W., 2006. Effect of floor cooling on farrowing sow and litter performance: field experiment under Dutch conditions. Transactions of the ASABE 49: 1521-1527.
CrossrefGoogle Scholar
Vasdal, G. and Andersen, I.L., 2012. A note on teat accessibility and sow parity; consequences for newborn piglets. Livestock Science 146: 91-94.
CrossrefGoogle Scholar
Vasdal, G., Glærum, M., Melišová, M., Bøe, K.E., Broom, D.M. and Andersen, I.L., 2010. Increasing the piglets’ use of the creep area – a battle against biology? Applied Animal Behaviour Science 125: 96-102.
CrossrefGoogle Scholar
Vasdal, G., Østensen, I., Melišová, M., Bozděchová, B., Illmann, G. and Andersen, I.L., 2011. Management routines at the time of farrowing – effects on teat success and postnatal piglet mortality from loose housed sows. Livestock Science 136: 225-231.
CrossrefGoogle Scholar
Vergauwen, H., Degroote, J., Prims, S., Wang, W., Fransen, E., De Smet, S., Casteleyn, C., Van Cruchten, S., Michiels, J. and Van Ginneken, C., 2017. Artificial rearing influences the morphology, permeability and redox state of the gastrointestinal tract of low and normal birth weight piglets. Journal of Animal Science and Biotechnology 8: 1-14.
Google Scholar
Wattanakul, W., Bulman, C.A., Edge, H.L. and Edwards, S.A., 2005. The effect of creep feed presentation method on feeding behaviour, intake and performance of suckling piglets. Applied Animal Behaviour Science 92: 27-36.
CrossrefGoogle Scholar
Weary, D.M., Appleby, M.C. and Fraser, D., 1999. Responses of piglets to early separation from the sow. Applied Animal Behaviour Science 63: 289-300. https://doi.org/10.1016/S0168-1591(99)00021-0 Google Scholar
Weary, D.M., Jasper, J. and Hötzel, M.J., 2008. Understanding weaning distress. Applied Animal Behaviour Science 110: 24-41.
CrossrefGoogle Scholar
White, K.R., Anderson, D.M. and Bate, L.A., 1996. Increasing piglet survival through an improved farrowing management protocol. Canadian Journal of Animal Science 76: 491-495.
CrossrefGoogle Scholar
Widowski, T.M., Torrey, S., Bench, C.J. and Gonyou, H.W., 2008. Development of ingestive behaviour and the relationship to belly nosing in early-weaned piglets. Applied Animal Behaviour Science 110: 109-127.
CrossrefGoogle Scholar
Widowski, T.M., Yuan, Y. and Gardner, J.M., 2005. Effect of accommodating sucking and nosing on the behaviour of artificially reared piglets. Laboratory Animals 39: 240-250.
CrossrefGoogle Scholar
Williams, A.M., Safranski, T.J., Spiers, D.E., Eichen, P.A., Coate, E.A. and Lucy, M.C., 2013. Effects of a controlled heat stress during late gestation, lactation, and after weaning on thermoregulation, metabolism, and reproduction of primiparous sows. Journal of Animal Science 91: 2700-2714.
CrossrefGoogle Scholar
Wolf, J., Žáková, E. and Groeneveld, E., 2008. Within-litter variation of birth weight in hyperprolific Czech Large White sows and its relation to litter size traits, stillborn piglets and losses until weaning. Livestock Science 115: 195-205.
CrossrefGoogle Scholar
Wolter, B., Ellis, M., Corrigan, B. and Dedecker, J., 2002. The effect of birth weight and feeding of supplemental milk replacer to piglets during lactation on preweaning and postweaning growth performance and carcass characteristics. Journal of Animal Science 80: 301-308.
CrossrefGoogle Scholar
Worobec, E.K., Duncan, I.J.H. and Widowski, T.M., 1999. The effects of weaning at 7, 14 and 28 days on piglet behaviour. Applied Animal Behaviour Science 62: 173-182.
CrossrefGoogle Scholar
Wu, G., Bazer, F.W., Burghardt, R.C., Johnson, G.A., Kim, S.W., Li, X.L., Satterfield, M.C. and Spencer, T.E., 2010. Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. Journal of Animal Science 88: E195-E204.
CrossrefGoogle Scholar
Yan, L., Jang, H. and Kim, I., 2011. Effects of varying creep feed duration on pre-weaning and post-weaning performance and behaviour of piglet and sow. Asian-Australasian Journal of Animal Sciences 24: 1601-1606
CrossrefGoogle Scholar
Yeruva, L., Spencer, N.E., Saraf, M.K., Hennings, L., Bowlin, A.K., Cleves, M.A., Mercer, K., Chintapalli, S.V., Shankar, K., Rank, R.G., Badger, T.M. and Ronis, M.J.J., 2016. Formula diet alters small intestine morphology, microbial abundance and reduces VE-cadherin and IL-10 expression in neonatal porcine model. BMC Gastroenterology 16: 1-13.
Google Scholar
Yun, J., Swan, K.M., Farmer, C., Oliviero, C., Peltoniemi, O. and Valros, A., 2014a. Prepartum nest-building has an impact on post-partum nursing performance and maternal behaviour in early lactating sows. Applied Animal Behaviour Science 160: 31-37.
CrossrefGoogle Scholar
Yun, J., Swan, K.M., Oliviero, C., Peltoniemi, O. and Valros, A., 2015. Effects of pre-partum housing environment on abnormal behaviour, the farrowing process, and interactions with circulating oxytocin in sows. Applied Animal Behaviour Science 162: 20-25.
CrossrefGoogle Scholar
Yun, J., Swan, K.M., Vienola, K., Kim, Y.Y., Oliviero, C., Peltoniemi, O.A.T. and Valros, A., 2014b. Farrowing environment has an impact on sow metabolic status and piglet colostrum intake in early lactation. Livestock Science 163: 120-125.
CrossrefGoogle Scholar
Zhong, X., Li, W., Huang, X., Wang, Y., Zhang, L., Zhou, Y., Hussain, A. and Wang, T., 2012. Effects of glutamine supplementation on the immune status in weaning piglets with intrauterine growth retardation. Archives of Animal Nutrition 66: 347-356.
CrossrefGoogle Scholar

Related titles:

Selenium in pig nutrition and health Understanding and combatting African Swine Fever Cover image The suckling and weaned piglet Cover image The value of fibre Cover image The gestating and lactating sow Poultry and pig nutrition Cover image Energy and Protein Metabolism and Nutrition Cover image Insects as food and feed: from production to consumption Cover image Phytate destruction - consequences for precision animal nutrition Cover image Weaning the pig

New titles

Institutional Offers

For institutional orders, please contact [email protected].

Purchase Options