Cover Image

Understanding and combatting African Swine Fever

A European perspective


Published: 2021  Pages: 310

eISBN: 978-90-8686-910-7 | ISBN: 978-90-8686-357-0

Book Type: Edited Collection
Afonso, C.L., Piccone, M.E., Zaffuto, K.M., Neilan, J., Kutish, G.F., Lu, Z., Balinsky, C.A., Gibb, T.R., Bean, T.J., Zsak, L. and Rock, D.L., 2004. African swine fever virus multigene family 360 and 530 genes affect host interferon response. Journal of Virology 78: 1858-1864. https://doi.org/10.1128/jvi.78.4.1858-1864.2004 CrossrefGoogle Scholar
Alonso, F., Dominguez, J., Viñuela, E. and Revilla, Y., 1997. African swine fever virus-specific cytotoxic T lymphocytes recognize the 32 kDa immediate early protein (vp32). Virus Research 49: 123-130. https://doi.org/10.1016/s0168-1702(97)01459-7 CrossrefGoogle Scholar
Argilaguet J.M., Pérez-Martín E., Nofrarías M., Gallardo C., Accensi F., Lacasta A., Mora M., Ballester M., Galindo-Cardiel I., López-Soria S., Escribano J.M., Reche P.A. and Rodríguez F., 2012. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS One 7: e40942. https://doi.org/10.1371/journal.pone.0040942 CrossrefGoogle Scholar
Arias, M.L., De La Torre, A., Dixon, L., Gallardo, C., Jori, F., Laddomada, A., Martins, C., Parkhouse, M., Revilla, Y., Rodríguez, F. and Sánchez-Vizcaíno, J.M., 2017. Blueprint and Roadmap on the possible development of a vaccine for African swine fever prepared by the African swine fever EU reference laboratory on Commission request. European Commission, Directorate-General for Health and Food Safety, Brussels, Belgium.
Google Scholar
Banchereau, J. and Steinman, R.M., 1998. Dendritic cells and the control of immunity. Nature 392: 245-252. https://doi.org/10.1038/32588 CrossrefGoogle Scholar
Basta, S., Knoetig, S.M., Spagnuolo-Weaver, M., Allan, G. and McCullough, K.C., 1999. Modulation of monocytic cell activity and virus susceptibility during differentiation into macrophages. Journal of Immunology 162: 3961-3969.
Google Scholar
Borca, M.V., Carrillo, C., Zsak, L., Laegreid, W.W., Kutish, G.F., Neilan, J.G., Burrage, T.G. and Rock, D.L., 1998. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. Journal of Virology 72: 2881-2889.
CrossrefGoogle Scholar
Burmakina, G., Malogolovkin, A., Tulman, E.R., Xu, W., Delhon, G., Kolbasov, D. and Rock, D.L., 2019. Identification of T-cell epitopes in African swine fever virus CD2v and C-type lectin proteins. Journal of General Virology 100: 259-265. https://doi.org/10.1099/jgv.0.001195 CrossrefGoogle Scholar
Butler, J.E., Wertz, N. and Sinkora, M., 2017. Antibody repertoire development in swine. Annual Review of Animal Biosciences 5: 255-279. https://doi.org/10.1146/annurev-animal-022516-022818 CrossrefGoogle Scholar
Canals, A., Alonso, F., Tomillo, J. and Domínguez, J., 1992. Analysis of T lymphocyte subsets proliferating in response to infective and UV-inactivated African swine fever viruses. Veterinary Microbiology 33: 117-127. https://doi.org/10.1016/0378-1135(92)90040-z CrossrefGoogle Scholar
Casal, I., Viñuela, E. and Enjuanes, L., 1987. Synthesis of African swine fever (ASF) virus-specific antibodies in vitro in a porcine leucocyte system. Immunology 62: 207-213.
Google Scholar
Childerstone, A., Takamatsu, H., Yang, H., Denyer, M. and Parkhouse, R.M., 1998. Modulation of T cell and monocyte function in the spleen following infection of pigs with African swine fever virus. Veterinary Immunology and Immunopathology 62: 281-296. https://doi.org/10.1016/s0165-2427(97)00173-6 CrossrefGoogle Scholar
Collin, M. and Bigley, V., 2018. Human dendritic cell subsets: an update. Immunology 154: 3-20. https://doi.org/10.1111/imm.12888 CrossrefGoogle Scholar
Correia, S., Ventura, S. and Parkhouse, R.M., 2013. Identification and utility of innate immune system evasion mechanisms of ASFV. Virus Research 173: 87-100. https://doi.org/10.1016/j.virusres.2012.10.013 CrossrefGoogle Scholar
De Oliveira, V.L., Almeida, S.C., Soares, H.R., Crespo, A., Marshall-Clarke, S. and Parkhouse, R.M., 2011. A novel TLR3 inhibitor encoded by African swine fever virus (ASFV). Archives of Virology 156: 597-609. https://doi.org/10.1007/s00705-010-0894-7 CrossrefGoogle Scholar
De Pelsmaeker, S., Devriendt, B., Leclercq, G. and Favoreel, H.W., 2018. Porcine NK cells display features associated with antigen-presenting cells. Journal of Leukocyte Biology 103: 129-140. https://doi.org/10.1002/JLB.4A0417-163RR CrossrefGoogle Scholar
Denyer, M.S., Wileman, T.E., Stirling, C.M., Zuber, B. and Takamatsu, H.H., 2006. Perforin expression can define CD8 positive lymphocyte subsets in pigs allowing phenotypic and functional analysis of natural killer, cytotoxic T, natural killer T and MHC un-restricted cytotoxic T-cells. Veterinary Immunology and Immunopathology 110: 279-292. https://doi.org/10.1016/j.vetimm.2005.10.005 CrossrefGoogle Scholar
Dixon, L.K., Islam, M., Nash, R. and Reis, A.L., 2019. African swine fever virus evasion of host defences. Virus Research 266: 25-33. https://doi.org/10.1016/j.virusres.2019.04.002 CrossrefGoogle Scholar
Escribano, J.M., Galindo, I. and Alonso, C., 2013. Antibody-mediated neutralization of African swine fever virus: myths and facts. Virus Research 173: 101-109. https://doi.org/10.1016/j.virusres.2012.10.012 CrossrefGoogle Scholar
Fishbourne, E., Abrams, C.C., Takamatsu, H.H. and Dixon, L.K., 2013. Modulation of chemokine and chemokine receptor expression following infection of porcine macrophages with African swine fever virus. Veterinary Microbiology 162: 937-943. https://doi.org/10.1016/j.vetmic.2012.11.027 CrossrefGoogle Scholar
Franzoni, G., Dei Giudici, S. and Oggiano, A., 2018. Infection, modulation and responses of antigen-presenting cells to African swine fever viruses. Virus Research 258: 73-80. https://doi.org/10.1016/j.virusres.2018.10.007 CrossrefGoogle Scholar
Franzoni, G., Edwards, J.C., Kurkure, N.V., Edgar, D.S., Sanchez-Cordon, P.J., Haines, F.J., Salguero, F.J., Everett, H.E., Bodman-Smith, K.B., Crooke, H.R. and Graham, S.P., 2014. Partial Activation of natural killer and gammadelta T cells by classical swine fever viruses is associated with type I interferon elicited from plasmacytoid dendritic cells. Clinical and Vaccine Immunology 21: 1410-1420. https://doi.org/10.1128/CVI.00382-14 CrossrefGoogle Scholar
Franzoni, G., Graham, S.P., Dei Giudici, S. and Oggiano, A., 2019. Porcine dendritic cells and viruses: an update. Viruses 11: 445. https://doi.org/10.3390/v11050445 CrossrefGoogle Scholar
Franzoni, G., Graham, S.P., Giudici, S.D., Bonelli, P., Pilo, G., Anfossi, A.G., Pittau, M., Nicolussi, P.S., Laddomada, A. and Oggiano, A., 2017. Characterization of the interaction of African swine fever virus with monocytes and derived macrophage subsets. Veterinary Microbiology 198: 88-98. https://doi.org/10.1016/j.vetmic.2016.12.010 CrossrefGoogle Scholar
Franzoni, G., Graham, S.P., Sanna, G., Angioi, P., Fiori, M.S., Anfossi, A., Amadori, M., Dei Giudici, S. and Oggiano, A., 2018. Interaction of porcine monocyte-derived dendritic cells with African swine fever viruses of diverse virulence. Veterinary Microbiology 216: 190-197. https://doi.org/10.1016/j.vetmic.2018.02.021 CrossrefGoogle Scholar
Franzoni, G., Razzuoli, E., Dei Giudici, S., Carta, T., Galleri, G., Zinellu, S., Ledda, M., Angioi, P., Modesto, P., Graham, S.P. and Oggiano, A., 2020. Comparison of macrophage responses to African swine fever viruses reveals that the NH/P68 strain is associated with enhanced sensitivity to type I IFN and cytokine responses from classically activated macrophages. Pathogens 9: 209. https://doi.org/10.3390/pathogens9030209 CrossrefGoogle Scholar
García-Belmonte, R., Pérez-Núñez, D., Pittau, M., Richt, J.A. and Revilla, Y., 2019. African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway. Journal of Virology 93. https://doi.org/10.1128/JVI.02298-18 CrossrefGoogle Scholar
Gil, S., Sepúlveda, N., Albina, E., Leitão, A. and Martins, C., 2008. The low-virulent African swine fever virus (ASFV/NH/P68) induces enhanced expression and production of relevant regulatory cytokines (IFNalpha, TNFalpha and IL12p40) on porcine macrophages in comparison to the highly virulent ASFV/L60. Archives of Virology 153: 1845-1854. https://doi.org/10.1007/s00705-008-0196-5 CrossrefGoogle Scholar
Gil, S., Spagnuolo-Weaver, M., Canals, A., Sepúlveda, N., Oliveira, J., Aleixo, A., Allan, G., Leitão, A. and Martins, C.L., 2003. Expression at mRNA level of cytokines and A238L gene in porcine blood-derived macrophages infected in vitro with African swine fever virus (ASFV) isolates of different virulence. Archives of Virology 148: 2077-2097. https://doi.org/10.1007/s00705-003-0182-x CrossrefGoogle Scholar
Golding, J.P., Goatley, L., Goodbourn, S., Dixon, L.K., Taylor, G. and Netherton, C.L., 2016. Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505. Virology 493: 154-161. https://doi.org/10.1016/j.virol.2016.03.019 CrossrefGoogle Scholar
Gómez-Puertas, P. and Escribano, J.M., 1997. Blocking antibodies inhibit complete African swine fever virus neutralization. Virus Research 49: 115-122. https://doi.org/10.1016/s0168-1702(97)01463-9 CrossrefGoogle Scholar
Gómez-Puertas, P., Rodríguez, F., Oviedo, J.M., Ramiro-Ibáñez, F., Ruiz-Gonzalvo, F., Alonso, C. and Escribano, J.M., 1996. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. Journal of Virology 70: 5689-5694.
CrossrefGoogle Scholar
Granja, A.G., Perkins, N.D. and Revilla, Y., 2008. A238L inhibits NF-ATc2, NF-kappa B, and c-Jun activation through a novel mechanism involving protein kinase C-theta-mediated up-regulation of the amino-terminal transactivation domain of p300. Journal of Immunology 180: 2429-2442. https://doi.org/10.4049/jimmunol.180.4.2429 CrossrefGoogle Scholar
Gregg, D.A., Mebus, C.A. and Schlafer, D.H., 1995. Early infection of interdigitating dendritic cells in the pig lymph node with African swine fever viruses of high and low virulence: immunohistochemical and ultrastructural studies. Journal of Veterinary Diagnostic Investigation 7: 23-30. https://doi.org/10.1177/104063879500700104 CrossrefGoogle Scholar
Hühr, J., Schäfer, A., Schwaiger, T., Zani, L., Sehl, J., Mettenleiter, T.C., Blome, S. and Blohm, U., 2020. Impaired T-cell responses in domestic pigs and wild boar upon infection with a highly virulent African swine fever virus strain. Transboundary and Emerging Diseases 67: 3016-3032. https://doi.org/10.1111/tbed.13678 CrossrefGoogle Scholar
Hume, D.A., 2015. The many alternative faces of macrophage activation. Frontiers in Immunology 6: 370. https://doi.org/10.3389/fimmu.2015.00370 CrossrefGoogle Scholar
Italiani, P. and Boraschi, D., 2014. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology 5: 514. https://doi.org/10.3389/fimmu.2014.00514 CrossrefGoogle Scholar
Karalyan, Z., Zakaryan, H., Sargsyan, K., Voskanyan, H., Arzumanyan, H., Avagyan, H. and Karalova, E., 2012. Interferon status and white blood cells during infection with African swine fever virus in vivo. Veterinary Immunology and Immunopathology 145: 551-555. https://doi.org/10.1016/j.vetimm.2011.12.013 CrossrefGoogle Scholar
Lanier, L.L., 2005. NK cell recognition. Annual Review of Immunology 23: 225-274. https://doi.org/10.1146/annurev.immunol.23.021704.115526 CrossrefGoogle Scholar
Lefevre, E.A., Carr, B.V., Inman, C.F., Prentice, H., Brown, I.H., Brookes, S.M., Garcon, F., Hill, M.L., Iqbal, M., Elderfield, R.A., Barclay, W.S., Gubbins, S., Bailey, M., Charleston, B. and Cosi, 2012. Immune responses in pigs vaccinated with adjuvanted and non-adjuvanted A(H1N1)pdm/09 influenza vaccines used in human immunization programmes. PLoS One 7: e32400. https://doi.org/10.1371/journal.pone.0032400 CrossrefGoogle Scholar
Leitão, A., Cartaxeiro, C., Coelho, R., Cruz, B., Parkhouse, R.M.E., Portugal, F.C., Vigário, J.D. and Martins, C.L.V., 2001. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. Journal of General Virology 82: 513-523. https://doi.org/10.1099/0022-1317-82-3-513 CrossrefGoogle Scholar
Leitão, A., Malur, A., Cornelis, P. and Martins, C.L., 1998. Identification of a 25-aminoacid sequence from the major African swine fever virus structural protein VP72 recognised by porcine cytotoxic T lymphocytes using a lipoprotein-based expression system. Journal of Virology Methods 75: 113-119. https://doi.org/10.1016/s0166-0934(98)00105-0 CrossrefGoogle Scholar
Mair, K.H., Essler, S.E., Patzl, M., Storset, A.K., Saalmüller, A. and Gerner, W., 2012. NKp46 expression discriminates porcine NK cells with different functional properties. European Journal of Immunology 42: 1261-1271. https://doi.org/10.1002/eji.201141989 CrossrefGoogle Scholar
Martins, C.L. and Leitão, A.C., 1994. Porcine immune responses to African swine fever virus (ASFV) infection. Veterinary Immunology and Immunopathology 43: 99-106. https://doi.org/10.1016/0165-2427(94)90125-2 CrossrefGoogle Scholar
Martins, C.L., Lawman, M.J., Scholl, T., Mebus, C.A. and Lunney, J.K., 1993. African swine fever virus specific porcine cytotoxic T cell activity. Archives of Virology 129: 211-225. https://doi.org/10.1007/bf01316896 CrossrefGoogle Scholar
McCullough, K.C., Basta, S., Knötig, S., Gerber, H., Schaffner, R., Kim, Y.B., Saalmüller, A. and Summerfield, A., 1999. Intermediate stages in monocyte-macrophage differentiation modulate phenotype and susceptibility to virus infection. Immunology 98: 203-212. https://doi.org/10.1046/j.1365-2567.1999.00867.x CrossrefGoogle Scholar
Medzhitov, R. and Janeway, C., Jr., 2000. Innate immunity. New England Journal of Medicine 343: 338-344. https://doi.org/10.1056/NEJM200008033430506 CrossrefGoogle Scholar
Mendoza, C., Videgain, S.P. and Alonso, F., 1991. Inhibition of natural killer activity in porcine mononuclear cells by African swine fever virus. Research in Veterinary Science 51: 317-321. https://doi.org/10.1016/0034-5288(91)90084-2 CrossrefGoogle Scholar
Mosser, D.M., 2003. The many faces of macrophage activation. Journal of Leukocyte Biology 73: 209-212. https://doi.org/10.1189/jlb.0602325 CrossrefGoogle Scholar
Muñoz-Moreno, R., Cuesta-Geijo, M.Á., Martínez-Romero, C., Barrado-Gil, L., Galindo, I., García-Sastre, A. and Alonso, C., 2016. Antiviral role of IFITM proteins in African swine fever virus infection. PLoS One 11: e0154366. https://doi.org/10.1371/journal.pone.0154366 CrossrefGoogle Scholar
Neilan, J.G., Zsak, L., Lu, Z., Burrage, T.G., Kutish, G.F. and Rock, D.L., 2004. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology 319: 337-342. https://doi.org/10.1016/j.virol.2003.11.011 CrossrefGoogle Scholar
Netherton, C.L., Goatley, L.C., Reis, A.L., Portugal, R., Nash, R.H., Morgan, S.B., Gault, L., Nieto, R., Norlin, V., Gallardo, C., Ho, C.S., Sanchez-Cordon, P.J., Taylor, G. and Dixon, L.K., 2019. Identification and immunogenicity of African Swine fever virus antigens. Frontiers in Immunology 10: 1318. https://doi.org/10.3389/fimmu.2019.01318 CrossrefGoogle Scholar
Netherton, C.L., Simpson, J., Haller, O., Wileman, T.E., Takamatsu, H.H., Monaghan, P. and Taylor, G., 2009. Inhibition of a large double-stranded DNA virus by MxA protein. Journal of Virology 83: 2310-2320. https://doi.org/10.1128/JVI.00781-08 CrossrefGoogle Scholar
Norley, S.G. and Wardley, R.C., 1983. Investigation of porcine natural-killer cell activity with reference to African swine-fever virus infection. Immunology 49: 593-597.
Google Scholar
Norley, S.G. and Wardley, R.C., 1984. Cytotoxic lymphocytes induced by African swine fever infection. Research in Veterinary Science 37: 255-257.
CrossrefGoogle Scholar
O’Donnell, V., Holinka, L.G., Gladue, D.P., Sanford, B., Krug, P.W., Lu, X., Arzt, J., Reese, B., Carrillo, C., Risatti, G.R. and Borca, M.V., 2015. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. Journal of Virology 89: 6048-6056. https://doi.org/10.1128/JVI.00554-15 CrossrefGoogle Scholar
Okutani, M., Tsukahara, T., Kato, Y., Fukuta, K. and Inoue, R., 2018. Gene expression profiles of CD4/CD8 double-positive T cells in porcine peripheral blood. Animal Science Journal 89: 979-987. https://doi.org/10.1111/asj.13021 CrossrefGoogle Scholar
Onisk, D.V., Borca, M.V., Kutish, G., Kramer, E., Irusta, P. and Rock, D.L., 1994. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology 198: 350-354. https://doi.org/10.1006/viro.1994.1040 CrossrefGoogle Scholar
Oura, C.A.L., Denyer, M.S., Takamatsu, H. and Parkhouse, R.M.E., 2005. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. Journal of General Virology 86: 2445-2450. https://doi.org/10.1099/vir.0.81038-0 CrossrefGoogle Scholar
Pérez-Núñez, D., García-Urdiales, E., Martínez-Bonet, M., Nogal, M.L., Barroso, S., Revilla, Y. and Madrid, R., 2015. CD2v interacts with adaptor protein AP-1 during African swine fever infection. PLoS One 10: e0123714. https://doi.org/10.1371/journal.pone.0123714 CrossrefGoogle Scholar
Pietschmann, J., Mur, L., Blome, S., Beer, M., Pérez-Sánchez, R., Oleaga, A. and Sánchez-Vizcaíno, J.M., 2016. African swine fever virus transmission cycles in Central Europe: evaluation of wild boar-soft tick contacts through detection of antibodies against Ornithodoros erraticus saliva antigen. BMC Veterinary Research 12: 1. https://doi.org/10.1186/s12917-015-0629-9 CrossrefGoogle Scholar
Popescu, L., Gaudreault, N.N., Whitworth, K.M., Murgia, M.V., Nietfeld, J.C., Mileham, A., Samuel, M., Wells, K.D., Prather, R.S. and Rowland, R.R.R., 2017. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1. Virology 501: 102-106. https://doi.org/10.1016/j.virol.2016.11.012 CrossrefGoogle Scholar
Portugal, R., Coelho, J., Höper, D., Little, N.S., Smithson, C., Upton, C., Martins, C., Leitão, A. and Keil, G.M., 2015. Related strains of African swine fever virus with different virulence: genome comparison and analysis. Journal of General Virology 96: 408-419. https://doi.org/10.1099/vir.0.070508-0 CrossrefGoogle Scholar
Portugal, R., Leitão, A. and Martins, C., 2018. Modulation of type I interferon signaling by African swine fever virus (ASFV) of different virulence L60 and NHV in macrophage host cells. Veterinary Microbiology 216: 132-141. https://doi.org/10.1016/j.vetmic.2018.02.008 CrossrefGoogle Scholar
Post, J., Weesendorp, E., Montoya, M. and Loeffen, W.L., 2017. Influence of age and dose of African swine fever virus infections on clinical outcome and blood parameters in pigs. Viral Immunology 30: 58-69. https://doi.org/10.1089/vim.2016.0121 CrossrefGoogle Scholar
Razzuoli, E., Franzoni, G., Carta, T., Zinellu, S., Amadori, M., Modesto, P. and Oggiano, A., 2020. Modulation of Type I interferon system by African swine fever virus. Pathogens 9: 361. https://doi.org/10.3390/pathogens9050361 CrossrefGoogle Scholar
Reis, A.L., Abrams, C.C., Goatley, L.C., Netherton, C., Chapman, D.G., Sánchez-Cordón, P.J. and Dixon, L.K., 2016. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine 34: 4698-4705. https://doi.org/10.1016/j.vaccine.2016.08.011 CrossrefGoogle Scholar
Reutner, K., Leitner, J., Müllebner, A., Ladinig, A., Essler, S.E., Duvigneau, J.C., Ritzmann, M., Steinberger, P., Saalmüller, A. and Gerner, W., 2013. CD27 expression discriminates porcine T helper cells with functionally distinct properties. Veterinary Research 44: 18. https://doi.org/10.1186/1297-9716-44-18 CrossrefGoogle Scholar
Revilla, Y., Pena, L. and Viñuela, E., 1992. Interferon-gamma production by African swine fever virus-specific lymphocytes. Scandinavian Journal of Immunology 35: 225-230. https://doi.org/10.1111/j.1365-3083.1992.tb02854.x CrossrefGoogle Scholar
Rock, D.L., 2017. Challenges for African swine fever vaccine development – … perhaps the end of the beginning. Veterinary Microbiology 206: 52-58. https://doi.org/10.1016/j.vetmic.2016.10.003 CrossrefGoogle Scholar
Ruiz-Gonzalvo, F., Rodríguez, F. and Escribano, J.M., 1996. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology 218: 285-289. https://doi.org/10.1006/viro.1996.0193 CrossrefGoogle Scholar
Saalmüller, A., Reddehase, M.J., Bühring, H.J., Jonjić, S. and Koszinowski, U.H., 1987. Simultaneous expression of CD4 and CD8 antigens by a substantial proportion of resting porcine T lymphocytes. European Journal of Immunology 17: 1297-1301. https://doi.org/10.1002/eji.1830170912 CrossrefGoogle Scholar
Saalmüller, A., Werner, T. and Fachinger, V., 2002. T-helper cells from naive to committed. Veterinary Immunology and Immunopathology 87: 137-145. https://doi.org/10.1016/s0165-2427(02)00045-4 CrossrefGoogle Scholar
Sánchez-Cordón, P.J., Jabbar, T., Chapman, D., Dixon, L.K. and Montoya, M., 2020. Absence of long-term protection in domestic pigs immunized with attenuated African swine fever virus isolate OURT88/3 or BeninDeltaMFG correlates with increased levels of regulatory T cells and IL-10. Journal of Virology 94: e00350-20. https://doi.org/10.1128/JVI.00350-20 CrossrefGoogle Scholar
Sánchez-Cordón, P.J., Romero-Trevejo, J.L., Pedrera, M., Sanchez-Vizcaino, J.M., Bautista, M.J. and Gomez-Villamandos, J.C., 2008. Role of hepatic macrophages during the viral haemorrhagic fever induced by African swine fever virus. Histolology and Histopathology 23: 683-691. https://doi.org/10.14670/HH-23.683 Google Scholar
Sánchez-Torres, C., Gómez-Puertas, P., Gómez-del-Moral, M., Alonso, F., Escribano, J.M., Ezquerra, A. and Domínguez, J., 2003. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Archives of Virology 148: 2307-2323. https://doi.org/10.1007/s00705-003-0188-4 CrossrefGoogle Scholar
Schäfer, A., Hühr, J., Schwaiger, T., Dorhoi, A., Mettenleiter, T.C., Blome, S., Schröder, C. and Blohm, U., 2019. Porcine invariant natural killer T cells: functional profiling and dynamics in steady state and viral infections. Frontiers in Immunology 10: 1380. https://doi.org/10.3389/fimmu.2019.01380 CrossrefGoogle Scholar
Schlafer, D.H., McVicar, J.W. and Mebus, C.A., 1984a. African swine fever convalescent sows: subsequent pregnancy and the effect of colostral antibody on challenge inoculation of their pigs. American Journal of Veterinary Research 45: 1361-1366.
Google Scholar
Schlafer, D.H., Mebus, C.A. and McVicar, J.W., 1984b. African swine fever in neonatal pigs: passively acquired protection from colostrum or serum of recovered pigs. American Journal of Veterinary Research 45: 1367-1372.
Google Scholar
Sedlak, C., Patzl, M., Saalmüller, A. and Gerner, W., 2014. CD2 and CD8alpha define porcine gammadelta T cells with distinct cytokine production profiles. Developmental and Comparative Immunology 45: 97-106. https://doi.org/10.1016/j.dci.2014.02.008 CrossrefGoogle Scholar
Singleton, H., Graham, S.P., Bodman-Smith, K.B., Frossard, J.P. and Steinbach, F., 2016. Establishing porcine monocyte-derived macrophage and dendritic cell systems for studying the interaction with PRRSV-1. Frontiers in Microbiology 7: 832. https://doi.org/10.3389/fmicb.2016.00832 CrossrefGoogle Scholar
Summerfield, A., 2012. Viewpoint: factors involved in type I interferon responses during porcine virus infections. Veterinary Immunology and Immunopathology 148: 168-171. https://doi.org/10.1016/j.vetimm.2011.03.011 CrossrefGoogle Scholar
Sun, L., Wu, J., Du, F., Chen, X. and Chen, Z.J., 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339: 786-791. https://doi.org/10.1126/science.1232458 CrossrefGoogle Scholar
Takamatsu, H.H., Denyer, M.S., Lacasta, A., Stirling, C.M., Argilaguet, J.M., Netherton, C.L., Oura, C.A., Martins, C. and Rodriguez, F., 2013. Cellular immunity in ASFV responses. Virus Research 173: 110-121. https://doi.org/10.1016/j.virusres.2012.11.009 CrossrefGoogle Scholar
Takamatsu, H.H., Denyer, M.S., Stirling, C., Cox, S., Aggarwal, N., Dash, P., Wileman, T.E. and Barnett, P.V., 2006. Porcine gammadelta T cells: possible roles on the innate and adaptive immune responses following virus infection. Veterinary Immunology and Immunopathology 112: 49-61. https://doi.org/10.1016/j.vetimm.2006.03.011 CrossrefGoogle Scholar
Takeuchi, O. and Akira, S., 2010. Pattern recognition receptors and inflammation. Cell 140: 805-820.
CrossrefGoogle Scholar
Wu, J. and Chen, Z.J., 2014. Innate immune sensing and signaling of cytosolic nucleic acids. Annual Review of Immunology 32: 461-488. https://doi.org/10.1146/annurev-immunol-032713-120156 CrossrefGoogle Scholar
Yang, H. and Parkhouse, R.M., 1996. Phenotypic classification of porcine lymphocyte subpopulations in blood and lymphoid tissues. Immunology 89: 76-83. https://doi.org/10.1046/j.1365-2567.1996.d01-705.x CrossrefGoogle Scholar
Zhu, J.J., Ramanathan, P., Bishop, E.A., O’Donnell, V., Gladue, D.P. and Borca, M.V., 2019. Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages. PLoS One 14: e0223955. https://doi.org/10.1371/journal.pone.0223955 CrossrefGoogle Scholar
Zsak, L., Onisk, D.V., Afonso, C.L. and Rock, D.L., 1993. Virulent African swine fever virus isolates are neutralized by swine immune serum and by monoclonal antibodies recognising a 72-kDa viral protein. Virology 196: 596-602. https://doi.org/10.1006/viro.1993.1515 CrossrefGoogle Scholar

Related titles:

Selenium in pig nutrition and health Understanding and combatting African Swine Fever Cover image The suckling and weaned piglet Cover image The value of fibre Cover image The gestating and lactating sow Poultry and pig nutrition Cover image Energy and Protein Metabolism and Nutrition Cover image Insects as food and feed: from production to consumption Cover image Phytate destruction - consequences for precision animal nutrition Cover image Weaning the pig

New titles

Institutional Offers

For institutional orders, please contact [email protected].

Purchase Options