Cover Image

Understanding and combatting African Swine Fever

A European perspective


Published: 2021  Pages: 310

eISBN: 978-90-8686-910-7 | ISBN: 978-90-8686-357-0

Book Type: Edited Collection
Arias, M. and Sánchez‐Vizcaíno, J., 2002. African swine fever eradication: the Spanish model. In: Morilla, A., Yoon, K. and Zimmerman, J. (eds.) Trends in emerging viral infections of swine. Iowa State Press, Ames, IA, USA, pp. 133-139.
CrossrefGoogle Scholar
Beltrán-Alcrudo, D., Kukielka, E.A., De Groot, N., Dietze, K., Sokhadze, M. and Martinez-Lopez, B., 2018. Descriptive and multivariate analysis of the pig sector in Georgia and its implications for disease transmission. PloS One 13: e0202800.
CrossrefGoogle Scholar
Beltrán-Alcrudo, D., Lubroth, J., Depner, K. and De La Rocque, S., 2008. African swine fever in the Caucasus. FAO Empres Watch 1.
Google Scholar
Belyanin, S., Vasiliev, A., Kolbasov, D., Tsybanov, S., Balyshev, V. and Kurinnov, V., 2011. ASFV virulence isolates. Veterinary Medicine of the Kuban 5.
Google Scholar
Blome, S., Gabriel, C. and Beer, M., 2013. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Research 173: 122-130. https://doi.org/10.1016/j.virusres.2012.10.026 CrossrefGoogle Scholar
Boinas, F., 1986. Information system to facilitate the eradication of African swine fever and control of pig diseases in Portugal. University of Reading, Reading, UK.
Google Scholar
Boinas, F.J.S., 1994. The role of Ornithodoros erraticus in the epidemiology of African swine fever in Portugal. University of Reading, Reading, UK.
Google Scholar
Boinas, F.S., Wilson, A.J., Hutchings, G.H., Martins, C. and Dixon, L.J., 2011. The persistence of African swine fever virus in field-infected Ornithodoros erraticus during the ASF endemic period in Portugal. PloS One 6: e20383.
CrossrefGoogle Scholar
Boklund, A., Dhollander, S., Vasile, T.C., Abrahantes, J., Bøtner, A., Gogin, A., Villeta, L.G., Gortázar, C., More, S. and Papanikolaou, A., 2020. Risk factors for African swine fever incursion in Romanian domestic farms during 2019. Scientific Reports 10: 10215.
CrossrefGoogle Scholar
Bonnet, S.I., Bouhsira, E., De Regge, N., Fite, J., Etoré, F., Garigliany, M.-M., Jori, F., Lempereur, L., Le Potier, M.-F. and Quillery, E., 2020. Putative role of arthropod vectors in African swine fever virus transmission in relation to their bio-ecological properties. Viruses 12: 778.
CrossrefGoogle Scholar
Cappai, S., Rolesu, S., Coccollone, A., Laddomada, A. and Loi, F., 2018. Evaluation of biological and socio-economic factors related to persistence of African swine fever in Sardinia. Preventive Veterinary Medicine 152: 1-11.
CrossrefGoogle Scholar
Charvátová, P., Wallo, R., Jarosil, T. and Šatrán, P., 2019. How ASF was eradicated in the Czech Republic. Available at: https://www.pigprogress.net/Health/Articles/2019/6/How-ASF-was-eradicated-in-the-Czech-Republic-429472E/. Google Scholar
Chenais, E., Depner, K., Guberti, V., Dietze, K., Viltrop, A. and Stahl, K., 2019a. Epidemiological considerations on African swine fever in Europe 2014-2018. Porcine Health Management 5: 6. https://doi.org/10.1186/s40813-018-0109-2 CrossrefGoogle Scholar
Chenais, E., Lewerin, S.S., Boqvist, S., Stahl, K., Alike, S., Nokorach, B. and Emanuelson, U., 2019b. Smallholders’ perceptions on biosecurity and disease control in relation to African swine fever in an endemically infected area in Northern Uganda. BMC Veterinary Research 15: 279. https://doi.org/10.1186/s12917-019-2005-7 CrossrefGoogle Scholar
Chenais, E., Ståhl, K., Guberti, V. and Depner, K., 2018. Identification of wild boar-habitat epidemiologic cycle in African swine fever epizootic. Emerging Infectious Diseases 24: 810.
CrossrefGoogle Scholar
Costard, S., Mur, L., Lubroth, J., Sanchez-Vizcaino, J.M. and Pfeiffer, D.U., 2013. Epidemiology of African swine fever virus. Virus Research 173: 191-197. https://doi.org/10.1016/j.virusres.2012.10.030 CrossrefGoogle Scholar
Danzetta, M.L., Marenzoni, M.L., Iannetti, S., Tizzani, P., Calistri, P. and Feliziani, F., 2020. African swine fever: lessons to learn from past eradication experiences. A systematic review. Frontiers in Veterinary Science 7: 296.
CrossrefGoogle Scholar
Dellicour, S., Desmecht, D., Paternostre, J., Malengreaux, C., Licoppe, A., Gilbert, M. and Linden, A., 2020. Unravelling the dispersal dynamics and ecological drivers of the African swine fever outbreak in Belgium. Journal of Applied Ecology 57: 1619-1629.
CrossrefGoogle Scholar
Depner, K., Dietze, K., Globig, A., Zani, L., Mettenleiter, T. and Chenais, E., 2020. African swine fever and the dilemma of a relatively low contagiousness. OIE Buletin 02.
CrossrefGoogle Scholar
Dixon, L.K., Stahl, K., Jori, F., Vial, L. and Pfeiffer, D.U., 2019. African swine fever epidemiology and control. Annual Review of Animal Biosciences 8: 211-246.
CrossrefGoogle Scholar
Dórea, F.C., Swanenburg, M., van Roermund, H., Horigan, V., de Vos, C., Gale, P., Lilja, T., Comin, A., Bahuon, C. and Zientara, S., 2017. Data collection for risk assessments on animal health (Acronym: DACRAH). EFSA Supporting Publications 14: 1171E.
CrossrefGoogle Scholar
Eble, P., Hagenaars, T., Weesendorp, E., Quak, S., Moonen-Leusen, H. and Loeffen, W., 2019. Transmission of African swine fever virus via carrier (survivor) pigs does occur. Veterinary Microbiology 237: 108345.
CrossrefGoogle Scholar
European Commission (EC), 1992. Council Directive 92/119/EEC of 17 December 1992 introducing general Community measures for the control of certain animal diseases and specific measures relating to swine vesicular disease. Official Journal of the European Union L 62: 69-85. Google Scholar
European Commission (EC), 2001. Council Directive 2001/89/EC of 23 October 2001 on Community measures for the control of classical swine fever. Official Journal of the European Union L 316: 5-35. Available at: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32001L0089. Google Scholar
European Commission (EC), 2002. Council Directive 2002/60/EC of 27 June 2002 laying down specific provisions for the control of African swine fever and amending Directive 92/119/EEC as regards Teschen disease and African swine fever. Official Journal of the European Union L 192: 27-46. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32002L0060. Google Scholar
European Commission (EC), 2003. 2003/422/EC: Commission Decision of 26 May 2003 approving an African swine fever diagnostic manual. Official Journal of the European Union L 143: 35-49. Available at: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32003D0422. Google Scholar
European Commission (EC), 2014. 2014/709/EU: Commission implementing Decision of 9 October 2014 concerning animal health control measures relating to African swine fever in certain Member States and repealing Implementing Decision 2014/178/EU (notified under document C(2014) 7222). Official Journal of the European Union L 295: 63-78. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014D0709. Google Scholar
European Commission (EC), 2015. Strategic approach to the management of African Swine Fever for the EU. Working document. SANTE/7113/2015 rev 12. European Union DG Sante, Brussels, Belgium. Available at: https://ec.europa.eu/food/sites/food/files/animals/docs/ad_control-measures_asf_wrk-doc-sante-2015-7113.pdf. Google Scholar
European Commission (EC), 2016. Regulation (EU) 2016/429 of the European Parliament and of the Council of 9 March 2016 on transmissible animal diseases and amending and repealing certain acts in the area of animal health (‘Animal Health Law’). Official Journal of the European Union L 84: 1-208. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2016.084.01.0001.01.ENG. Google Scholar
European Commission (EC), 2020. Commission Delegated Regulation (EU) 2020/687 of 17 December 2019 supplementing Regulation (EU) 2016/429 of the European Parliament and the Council, as regards rules for the prevention and control of certain listed diseases. Official Journal of the European Union L 174: 64-139. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2020.174.01.0064.01.ENG&toc=OJ%3AL%3A2020%3A174%3ATOC. Google Scholar
European Food Safety Authority (EFSA), 2017. Epidemiological analyses of African swine fever in the Baltic States and Poland: (Update September 2016-September 2017). EFSA Journal 15: 5068. https://doi.org/10.2903/j.efsa.2017.5068 CrossrefGoogle Scholar
European Food Safety Authority (EFSA), 2018. Epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018). EFSA Journal 16: 5494. https://doi.org/10.2903/j.efsa.2018.5494 CrossrefGoogle Scholar
European Food Safety Authority (EFSA), 2020. Epidemiological analyses of African swine fever in the European Union (November 2018 to October 2019). EFSA Journal 18: 5996. https://doi.org/10.2903/j.efsa.2020.5996 CrossrefGoogle Scholar
European Food Safety Authority Panel on Animal Health and Welfare (EFSA AHAW Panel), 2014. Scientific opinion on African swine fever. EFSA Journal 12: 3628. https://doi.org/10.2903/j.efsa.2014.3628 CrossrefGoogle Scholar
European Food Safety Authority Panel on Animal Health and Welfare (EFSA AHAW Panel), 2015. Scientific opinion on African swine fever. EFSA Journal 13: 4163. https://doi.org/10.2903/j.efsa.2015.4163 CrossrefGoogle Scholar
European Food Safety Authority Panel on Animal Health and Welfare (EFSA AHAW Panel), 2018. African swine fever in wild boar. EFSA Journal 16: 5344. https://doi.org/10.2903/j.efsa.2018.5344 CrossrefGoogle Scholar
Federal Service for Veterinary and Phytosanitary Surveillance in Russia, 2018. The Rosselkhoznadzor is forced to introduce a temporary ban on the supply of live pigs and pig products from the territory of the Republic of Belarus. Available at: https://fsvps.gov.ru/fsvps/asf/news/25955.html. Google Scholar
Federal Service for Veterinary and Phytosanitary Surveillance in Russia, 2020. Available at: https://fsvps.gov.ru/fsvps/importExport/belarus/restrictions.html. Google Scholar
Food and Agriculture Organization of the United nations (FAO), 2013. Empres watch. African swine fever in the Russian Federation: risk factors for Europe and beyond. Available at: http://www.fao.org/docrep/018/aq240e/aq240e.pdf. Google Scholar
Fowler, M., 1996. Husbandry and diseases of captive wild swine and peccaries. Revue Scientifique et Technique (International Office of Epizootics) 15: 141-154.
CrossrefGoogle Scholar
Gallardo, C., Nurmoja, I., Soler, A., Delicado, V., Simón, A., Martin, E., Perez, C., Nieto, R. and Arias, M., 2018. Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Veterinary Microbiology 219: 70-79.
CrossrefGoogle Scholar
Gallardo, C., Soler, A., Rodze, I., Nieto, R., Cano‐Gómez, C., Fernandez‐Pinero, J. and Arias, M., 2019. Attenuated and non‐haemadsorbing (non‐HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary and Emerging Diseases 66: 1399-1404.
CrossrefGoogle Scholar
Gogin, A., Gerasimov, V., Malogolovkin, A. and Kolbasov, D., 2013. African swine fever in the North Caucasus region and the Russian Federation in years 2007-2012. Virus Research 173: 198-203. https://doi.org/10.1016/j.virusres.2012.12.007 CrossrefGoogle Scholar
Grigoryan, A., 2013. Head of Veterinary Service of Nagorno-Karabakh: spread of ASF was prevented. Available at: https://www.kavkaz-uzel.eu/articles/219762/. Google Scholar
Guinat, C., Gubbins, S., Vergne, T., Gonzales, J., Dixon, L. and Pfeiffer, D., 2016. Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain. Epidemiology and Infection 144: 25-34.
CrossrefGoogle Scholar
Gulenkin, V., Korennoy, F., Karaulov, A. and Dudnikov, S., 2011. Cartographical analysis of African swine fever outbreaks in the territory of the Russian Federation and computer modeling of the basic reproduction ratio. Preventive Veterinary Medicine 102: 167-174.
CrossrefGoogle Scholar
Heuschele, W.P and Coggins, L., 1965. Isolation of African swine fever from a giant forest hog. Bulletin of Epizootic Diseases of Africa 13: 255-256.
Google Scholar
Iglesias, I., Munoz, M., Montes, F., Perez, A., Gogin, A., Kolbasov, D. and De la Torre, A., 2016. Reproductive ratio for the local spread of African swine fever in wild boars in the Russian Federation. Transboundary and Emerging Diseases 63: e237-e245.
CrossrefGoogle Scholar
Jori, F. and Bastos, A.D., 2009. Role of wild suids in the epidemiology of African swine fever. EcoHealth 6: 296-310. https://doi.org/10.1007/s10393-009-0248-7 CrossrefGoogle Scholar
Jori, F., Chenais, E., Boinas, F., Busauskas, P., Dholllander, S., Fleischmann, L., Olsevskis, E., Rijks, J., Schulz, K. and Thulke, H., 2020. Application of the World Café method to discuss the efficiency of African swine fever control strategies in European wild boar (Sus scrofa) populations. Preventive Veterinary Medicine 185: 105178.
CrossrefGoogle Scholar
Jori, F., Vial, L., Penrith, M.L., Perez-Sanchez, R., Etter, E., Albina, E., Michaud, V. and Roger, F., 2013. Review of the sylvatic cycle of African swine fever in sub-Saharan Africa and the Indian ocean. Virus Research 173: 212-227. https://doi.org/10.1016/j.virusres.2012.10.005 CrossrefGoogle Scholar
Korennoy, F., Gulenkin, V., Malone, J., Mores, C., Dudnikov, S. and Stevenson, M., 2014. Spatio-temporal modeling of the African swine fever epidemic in the Russian Federation, 2007-2012. Spatial and Spatio-temporal Epidemiology 11: 135-141.
CrossrefGoogle Scholar
Laddomada, A., Rolesu, S., Loi, F., Cappai, S., Oggiano, A., Madrau, M.P., Sanna, M.L., Pilo, G., Bandino, E. and Brundu, D., 2019. Surveillance and control of African swine fever in free‐ranging pigs in Sardinia. Transboundary and Emerging Diseases 66: 1114-1119.
CrossrefGoogle Scholar
Lange, M., Guberti, V. and Thulke, H.H., 2018. Understanding ASF spread and emergency control concepts in wild boar populations using individual‐based modelling and spatio‐temporal surveillance data. EFSA Supporting Publications 15: 1521E.
CrossrefGoogle Scholar
Loi, F., Cappai, S., Coccollone, A. and Rolesu, S., 2019a. Standardized risk analysis approach aimed to evaluate the last African swine fever eradication program performance, in Sardinia. Frontiers in Veterinary Science 6: 299.
CrossrefGoogle Scholar
Loi, F., Laddomada, A., Coccollone, A., Marrocu, E., Piseddu, T., Masala, G., Bandino, E., Cappai, S. and Rolesu, S., 2019b. Socio-economic factors as indicators for various animal diseases in Sardinia. PloS One 14: e0217367.
CrossrefGoogle Scholar
Manso Ribeiro, J. and Rosa Azevedo, J., 1961. Reapparition de la peste porcine africaine au Portugal. Bulletin de l’Office International des Epizooties 55: 88-106.
Google Scholar
Manso Ribeiro, J., Rosa Azevedo, J., Teixeira, M., Braco Forte, M., Rodrigues Ribeiro, A., Oliveira e Noronha, F., Grave Pereira, C. and Dias Vigario, J., 1958. An atypical strain of swine fever virus in Portugal. Bulletin de l’Office International des Epizooties 50: 516-534.
Google Scholar
Marcon, A., Linden, A., Satran, P., Gervasi, V., Licoppe, A. and Guberti, V., 2020. R0 Estimation for the African swine fever epidemics in wild boar of Czech Republic and Belgium. Veterinary Sciences 7: 2.
CrossrefGoogle Scholar
Meijaard, E., d’Huart, J. and Oliver, W., 2011. Family Suidae (pigs). In: Wilson, DE and Mittermeier, R. (eds.) Handbook of the mammals of the world. Lynx Edicions, Barcelona, Spain, pp. 248-291.
Google Scholar
Montgomery, E., 1921. On a form of swine fever occuring in British East Africa (Kenya colony). Journal of Comparative Pathology and Therapeutics 24: 159-191 (part I), 243-269 (part II).
CrossrefGoogle Scholar
Mulumba‐Mfumu, L.K., Saegerman, C., Dixon, L.K., Madimba, K.C., Kazadi, E., Mukalakata, N.T., Oura, C.A., Chenais, E., Masembe, C. and Ståhl, K., 2019. African swine fever: update on Eastern, Central and Southern Africa. Transboundary and Emerging Diseases 66: 1462-1480.
CrossrefGoogle Scholar
Nielsen, J., Larsen, T., Halasa, T. and Christiansen, L.E., 2017. Estimation of the transmission dynamics of African swine fever virus within a swine house. Epidemiology and Infection 145: 2787-2796.
CrossrefGoogle Scholar
Nurmoja, I., Mõtus, K., Kristian, M., Niine, T., Schulz, K., Depner, K. and Viltrop, A., 2018. Epidemiological analysis of the 2015-2017 African swine fever outbreaks in Estonia. Preventive Veterinary Medicine 181: 104556
CrossrefGoogle Scholar
Olesen, A.S., Belsham, G.J., Bruun Rasmussen, T., Lohse, L., Bødker, R., Halasa, T., Boklund, A. and Bøtner, A., 2020. Potential routes for indirect transmission of African swine fever virus into domestic pig herds. Transboundary and Emerging Diseases 67: 1472-1484.
CrossrefGoogle Scholar
Olesen, A.S., Lohse, L., Boklund, A., Halasa, T., Belsham, G., Rasmussen, T. and Bøtner, A., 2018. Short time window for transmissibility of African swine fever virus from a contaminated environment. Transboundary and Emerging Diseases 65: 1024-1032.
CrossrefGoogle Scholar
Olesen, A.S., Lohse, L., Boklund, A., Halasa, T., Gallardo, C., Pejsak, Z., Belsham, G.J., Rasmussen, T.B. and Bøtner, A., 2017. Transmission of African swine fever virus from infected pigs by direct contact and aerosol routes. Veterinary Microbiology 211: 92-102.
CrossrefGoogle Scholar
Oļševskis, E., Guberti, V., Seržants, M., Westergaard, J., Gallardo, C., Rodze, I. and Depner, K., 2016. African swine fever virus introduction into the EU in 2014: experience of Latvia. Research in Veterinary Science 105: 28-30.
CrossrefGoogle Scholar
Oļševskis, E., Schulz, K., Staubach, C., Seržants, M., Lamberga, K., Pūle, D., Ozoliņš, J., Conraths, F.J. and Sauter‐Louis, C., 2020. African swine fever in Latvian wild boar – a step closer to elimination. Transboundary and Emerging Diseases 67: 2615-2629.
CrossrefGoogle Scholar
Ordas, A., Sanchez-Botija, C., Bruyel, V. and Olias, J., 1983. African swine fever. The current situation in Spain. In: Wilkinson, P.J. (ed.) Coordination of Agricultural research. African swine fever. Eur 8466. Office for Official Publications of the European Communities, Luxembourg, Luxembourg, pp. 7-11.
Google Scholar
Oura, C., Powell, P., Anderson, E. and Parkhouse, R., 1998. The pathogenesis of African swine fever in the resistant bushpig. Journal of General Virology 79: 1439-1443.
CrossrefGoogle Scholar
Pejsak, Z., Truszczyński, M., Kozak, E. and Markowska-Daniel, I., 2014. Epidemiological analysis of two first cases of African swine fever in wild boars in Poland. Medycyna Weterynaryjna 70: 369-372.
Google Scholar
Penrith, M.L. and Vosloo, W., 2009. Review of African swine fever: transmission, spread and control. Journal of the South African Veterinary Association 80: 58-62.
CrossrefGoogle Scholar
Penrith, M.L., Bastos, A.D., Etter, E.M. and Beltrán‐Alcrudo, D., 2019. Epidemiology of African swine fever in Africa today: sylvatic cycle versus socio‐economic imperatives. Transboundary and Emerging Diseases 66: 672-686.
CrossrefGoogle Scholar
Perestrelo Vieira, R., 1993. Evolution of African swine fever in Portugal. Coordination of agricultural research. In: Galo, A. (ed.) Coordination of Agricultural research. African swine fever. Office for Official Publications of the European Communities, Luxembourg, Luxembourg, pp. 43-51.
Google Scholar
Pérez, J., Fernández, A., Sierra, M., Herraez, P., Fernández, A. and de las Mulas, J.M., 1998. Serological and immunohistochemical study of African swine fever in wild boar in Spain. Veterinary Record 143: 136-139.
CrossrefGoogle Scholar
Pérez-Sánchez, R., Astigarraga, A., Oleaga-Perez, A. and Encinas-Grandes, A., 1994. Relationship between the persistence of African swine fever and the distribution of Ornithodoros erraticus in the province of Salamanca, Spain. Veterinary Record 135: 207-209.
CrossrefGoogle Scholar
Pietschmann, J., Guinat, C., Beer, M., Pronin, V., Tauscher, K., Petrov, A., Keil, G. and Blome, S., 2015. Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Archives of Virology 160: 1657-1667.
CrossrefGoogle Scholar
Plowright, W., 1981. African swine fever. In: Williams, E.S. and Barker, I.K. (eds.) Infectious diseases of wild mammals. Iowa State University Press, Ames, pp. 178-190.
Google Scholar
Polo Jover, F. and Sanchez Botija, C., 1961. African swine fever in Spain. Bulletin de l’Office International des Epizooties 55: 107-147.
Google Scholar
Probst, C., Gethmann, J., Amendt, J., Lutz, L., Teifke, J.P. and Conraths, F.J., 2020. Estimating the postmortem interval of wild boar carcasses. Veterinary Sciences 7: 6.
CrossrefGoogle Scholar
Rahimi, P., Sohrabi, A., Ashrafihelan, J., Edalat, R., Alamdari, M., Masoudi, M., Mostofi, S. and Azadmanesh, K., 2010. Emergence of African swine fever virus, northwestern Iran. Emerging Infectious Diseases 16: 1946.
CrossrefGoogle Scholar
Rowlands, R.J., Michaud, V., Heath, L., Hutchings, G., Oura, C., Vosloo, W., Dwarka, R., Onashvili, T., Albina, E. and Dixon, L.K., 2008. African swine fever virus isolate, Georgia, 2007. Emerging Infectious Diseases 14: 1870-1874. https://doi.org/10.3201/eid1412.080591 CrossrefGoogle Scholar
Sanchez Botija, C., 1982. African swine fever – new developments. Revue Scientifique et Technique 1: 1065-1094.
CrossrefGoogle Scholar
Sanchez-Vizcaino, J.M., Mur, L. and Martinez-Lopez, B., 2013. African swine fever (ASF): five years around Europe. Veterinary Microbiology 165: 45-50. https://doi.org/10.1016/j.vetmic.2012.11.030 CrossrefGoogle Scholar
Schulz, K., Conraths, F.J., Blome, S., Staubach, C. and Sauter-Louis, C., 2019a. African swine fever: fast and furious or slow and steady? Viruses 11: 866.
CrossrefGoogle Scholar
Schulz, K., Staubach, C., Blome, S., Nurmoja, I., Viltrop, A., Conraths, F., Kristian, M. and C, S.-L., 2020. How to demonstrate freedom from African swine fever in wild boar – Estonia as an example. Vaccines 8: 336.
CrossrefGoogle Scholar
Schulz, K., Staubach, C., Blome, S., Viltrop, A., Nurmoja, I., Conraths, F.J. and Sauter-Louis, C., 2019b. Analysis of Estonian surveillance in wild boar suggests a decline in the incidence of African swine fever. Scientific Reports 9: 8490.
CrossrefGoogle Scholar
Ståhl, K., Sternberg-Lewerin, S., Blome, S., Viltrop, A., Penrith, M.-L. and Chenais, E., 2019. Lack of evidence for long term carriers of African swine fever virus-a systematic review. Virus Research 272: 197725.
CrossrefGoogle Scholar
Thomson, G.R., 1985. The epidemiology of African swine fever: the role of free-living hosts in Africa. The Onderstepoort Journal of Veterinary Research 52: 201-209.
Google Scholar
Tummeleht, L., Jürison, M., Kurina, O., Kirik, H., Jeremejeva, J. and Viltrop, A., 2020. Diversity of Diptera species in Estonian pig farms. Veterinary Sciences 7: 13.
CrossrefGoogle Scholar
Vepkhvadze, N., Menteshashvili, I., Kokhreidze, M., Goginashvili, K., Tigilauri, T., Mamisashvili, E., Gelashvili, L., Abramishvili, T., Donduashvili, M. and Ghvinjilia, G., 2017. Active surveillance of African swine fever in domestic swine herds in Georgia, 2014. Revue Scientifique et Technique 36: 879-887.
CrossrefGoogle Scholar
Vergne, T., Gogin, A. and Pfeiffer, D., 2017. Statistical exploration of local transmission routes for African swine fever in pigs in the Russian Federation, 2007-2014. Transboundary and Emerging Diseases 64: 504-512.
CrossrefGoogle Scholar
Vergne, T., Korennoy, F., Combelles, L., Gogin, A. and Pfeiffer, D.U., 2016. Modelling African swine fever presence and reported abundance in the Russian Federation using national surveillance data from 2007 to 2014. Spatial and Spatio-temporal Epidemiology 19: 70-77.
CrossrefGoogle Scholar
Vigario, J.D. and Caiado, J., 1989. Situazione epidemiologica in Portogallo. In: Peste Suina Africana. Istituto Zooprofilattico Sperimentale Sardegna, Nuoro, Italy, pp. 123-132.
Google Scholar
Wilkinson, P., 1984. The persistence of African swine fever in Africa and the Mediterranean. Preventive Veterinary Medicine 2: 71-82.
CrossrefGoogle Scholar
Wilkinson, P., Wardley, R. and Williams, S., 1983. Studies in pigs infected with African swine fever virus (Malta/78). CEC/FAO Expert Consultation on African Swine Fever Research. EEC Publication EUR 8466 EN, Sardinia, Italy, pp. 74-84.
Google Scholar
Wilkinson, P.J., Dixon, L., Sumption, K., Ekue, F., Hutchings, G., Payne, A. and Boinas, F., 1993. Genetic variation and epidemiology of African swine fever in Europe and Africa. In: International Congress of Virology, Glasgow, UK, p. 223.
Google Scholar
Zani, L., Dietze, K., Dimova, Z., Forth, J.H., Denev, D., Depner, K. and Alexandrov, T., 2019. African swine fever in a Bulgarian backyard farm – a case report. Veterinary Sciences 6: 94.
CrossrefGoogle Scholar
Zani, L., Forth, J.H., Forth, L., Nurmoja, I., Leidenberger, S., Henke, J., Carlson, J., Breidenstein, C., Viltrop, A. and Höper, D., 2018. Deletion at the 5’-end of Estonian ASFV strains associated with an attenuated phenotype. Scientific Reports 8: 6510.
CrossrefGoogle Scholar
Zhou, X., Li, N., Luo, Y., Liu, Y., Miao, F., Chen, T., Zhang, S., Cao, P., Li, X. and Tian, K., 2018. Emergence of African swine fever in China, 2018. Transboundary and Emerging Diseases 65: 1482.
CrossrefGoogle Scholar

Related titles:

Selenium in pig nutrition and health Understanding and combatting African Swine Fever Cover image The suckling and weaned piglet Cover image The value of fibre Cover image The gestating and lactating sow Poultry and pig nutrition Cover image Energy and Protein Metabolism and Nutrition Cover image Insects as food and feed: from production to consumption Cover image Phytate destruction - consequences for precision animal nutrition Cover image Weaning the pig

New titles

Institutional Offers

For institutional orders, please contact [email protected].

Purchase Options