Adamberg, K., Tomson, K., Talve, T., Pudova, K., Puurand, M., Visnapuu, T., Alamäe, T. and Adamberg, S., 2015. Levan enhances associated growth of Bacteroides, Escherichia, Streptococcus and Faecalibacterium in fecal microbiota. PLoS ONE 10: e0144042.
MedlineGoogle Scholar
Adamberg, S., Tomson, K., Vija, H., Puurand, M., Kabanova, N., Visnapuu, T., Jõgi, E., Alamäe, T. and Adamberg, K., 2014. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are enhanced by the shortage of amino acids. Frontiers Nutrition 1: 21.
MedlineGoogle Scholar
Aguirre, M., Jonkers, D.M.A.E., Troost, F.J. and Roeselers, G., 2014. In vitro characterization of the impact of different substrates on metabolite production, energy extraction and composition of gut microbiota from lean and obese subjects. PLoS ONE 9: e113864.
Crossref, MedlineGoogle Scholar
Aguirre, M., De Souza, C.B. and Venema, K., 2016. The gut microbiota from lean and obese subjects contribute differently to the fermentation of arabinogalactan and inulin. PLoS ONE 11(7): e0159236.
MedlineGoogle Scholar
Belorkar, S.A. and Gupta, A.K., 2016. Oligosaccharides: a boon from nature’s desk. Applied Microbiology and Biotechnology Express 6: 82.
Google Scholar
Birt, D.F., Boylston, T., Hendrich, S., Jane, J.-L., Hollis, J., Li, L., McClelland, J., Moore, S., Phillips, G.J., Rowling, M., Schalinske, K., Scott, M.P. and Whitley, E.M., 2013. Resistant starch: promise for improving human health. Advances in Nutrition 4: 587-601.
Crossref, MedlineGoogle Scholar
Burkitt, D., Walker, A. and Painter, N., 1972. Effect of dietary fibre on stools and transit-times, and its role in the causation of disease. The Lancet 30: 1408-1411.
Google Scholar
Chassard, C. and Bernalier-Donadille, A., 2006. H2 and acetate transfers during xylan fermentation between a butyrate-producing xylanolytic species and hydrogenotrophic microorganisms from the human gut. FEMS Microbiology Letters 254: 116-122.
Crossref, MedlineGoogle Scholar
Chung, W.S., Walker, A.W., Louis, P., Parkhill, J., Vermeiren, J., Bosscher, D., Duncan, S.H. and Flint, H.J., 2016. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology 14: 3.
Crossref, MedlineGoogle Scholar
Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerstrm, R., Mtt, J., Saarela, M., Mattila-Sandholm, T. and Poutanen, K., 2002. In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. Journal of the Science of Food and Agriculture 82: 781-789.
CrossrefGoogle Scholar
Cummings, J.H., 1981. Short chain fatty acids in the human colon. Gut 22: 763-779.
Crossref, MedlineGoogle Scholar
Derrien, M., Adawi, D., Ahrné, S., Jeppsson, B., Molin, G., Osman, N., Štšepetova, J., Vaughan, E.E., De Vos, W.M. and Ouwehand, A.C., 2004. The intestinal mucosa as a habitat of the gut microbiota and a rational target for probiotic functionality and safety. Microbiology Ecology Health Disease 16: 137-144.
CrossrefGoogle Scholar
DeSantis, T.Z., Keller, K., Karaoz, U., Alekseyenko, A.V, Singh, N.N.S., Brodie, E.L., Pei, Z., Andersen, G.L. and Larsen, N., 2011. Simrank: rapid and sensitive general-purpose k-mer search tool. BMC Ecology 11: 11.
Crossref, MedlineGoogle Scholar
Dorokhov, Y.L., Shindyapina, A.V., Sheshukova, E.V. and Komarova, T.V., 2015. Metabolic methanol: molecular pathways and physiological roles. Physiology of Reviews 95: 603-644.
Crossref, MedlineGoogle Scholar
Elia, M. and Cummings, J.H., 2007. Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates. European Journal of Clinical Nutrition 61: S40-S74.
Crossref, MedlineGoogle Scholar
Englyst, H.N., Hay, S. and Macfarlane, G.T., 1987. Polysaccharide breakdown by mixed populations of human faecal bacteria. FEMS Microbiology and Ecology 95: 163-171.
Google Scholar
Fuller, S., Beck, E., Salman, H. and Tapsell, L., 2016. New horizons for the study of dietary fiber and health: a review. Plant Foods and Human Nutrition 71: 1-12.
Crossref, MedlineGoogle Scholar
Gómez, B., Gullón, B., Yáñez, R., Schols, H. and Alonso, J.L., 2016. Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: a comparative evaluation. Journal of Functional Foods 20: 108-121.
CrossrefGoogle Scholar
Hald, S., Schioldan, A.G., Moore, M.E., Dige, A., Lærke, H.N., Agnholt, J., Knudsen, K.E.B., Hermansen, K., Marco, M.L., Gregersen, S. and Dahlerup, J.F., 2016. Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: a randomised crossover study. PLoS ONE 11: e0159223.
MedlineGoogle Scholar
Haynes, W.M., 2012. Standard thermodynamic properties of chemical substances. CRC Handbook. Chemical Physics 13: 5.4-5.41.
Google Scholar
Hoskins, L.C. and Boulding, E.T., 1981. Mucin degradation in human colon ecosystems. Journal of Clinical Investigation 67: 163-172.
Crossref, MedlineGoogle Scholar
Jung, T.H., Jeon, W.M. and Han, K.S., 2015. In vitro effects of dietary inulin on human fecal microbiota and butyrate production. Journal of Microbiology and Biotechnology 25: 1555-1558.
Crossref, MedlineGoogle Scholar
Kabanova, N., Kazarjan, A., Stulova, I. and Vilu, R., 2009. Microcalorimetric study of growth of Lactococcus lactis IL1403 at different glucose concentrations in broth. Thermochimica Acta 496: 87-92.
CrossrefGoogle Scholar
Kelly, G.S., 1999. Larch arabinogalactan: clinical relevance of a novel immune-enhancing polysaccharide. Alternative Medicine Reviews 4: 96-103.
MedlineGoogle Scholar
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M. and Glöckner, F.O., 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41: 1-11.
Crossref, MedlineGoogle Scholar
Koropatkin, N.M., Cameron, E. and Martens, E.C., 2012. How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology 10: 323-335.
Crossref, MedlineGoogle Scholar
Macfarlane, G.T. and Englyst, H.N., 1986. Starch utilization by the human large intestinal microflora. Journal of Applied Bacteriology 60: 195-201.
Crossref, MedlineGoogle Scholar
Macfarlane, G.T., Steed, H. and Macfarlane, S., 2008. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology 104: 305-344.
MedlineGoogle Scholar
Martens, E.C., 2016. Microbiome: fibre for the future. Nature 529: 158-159.
Crossref, MedlineGoogle Scholar
Martens, E.C., Kelly, A.G., Tauzin, A.S. and Brumer, H., 2014. The devil lies in the details: how variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes. Journal of Molecular Biology 426: 3851-3865.
Crossref, MedlineGoogle Scholar
McRorie, J.W., 2015. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 2: what to look for and how to recommend an effective fiber therapy. Nutrition Today 50: 90-97.
Crossref, MedlineGoogle Scholar
Miller, T.L. and Wolin, M.J., 1996. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Applied and Environmental Microbiology 62: 1589-1592.
MedlineGoogle Scholar
Norden, 2014. Nordic Nutrition Recommendations 2012 – Integrating nutrition and physical activity. Nordic Council of Ministers, Copenhagen, Denmark. Available at: http://tinyurl.com/y8e26fr7. Google Scholar
Porras-Domínguez, J.R., Ávila-Fernández, Á., Rodríguez-Alegría, M.E., Miranda-Molina, A., Escalante, A., González-Cervantes, R., Olvera, C. and López Munguía, A., 2014. Levan-type FOS production using a Bacillus licheniformis endolevanase. Process Biochemistry 49: 783-790.
CrossrefGoogle Scholar
Roberfroid, M., 2007. Prebiotics: the concept revisited. Journal of Nutrition 137: 830S-837S.
Crossref, MedlineGoogle Scholar
Rumpagaporn, P., Reuhs, B.L., Kaur, A., Patterson, J.A., Keshavarzian, A. and Hamaker, B.R., 2015. Structural features of soluble cereal arabinoxylan fibers associated with a slow rate of in vitro fermentation by human fecal microbiota. Carbohydrate Polymers 130: 191-197.
Crossref, MedlineGoogle Scholar
Russell, J.B., 1986. Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy. Journal of Bacteriology 168: 694-701.
Crossref, MedlineGoogle Scholar
Rycroft, C.E., Jones, M.R., Gibson, G.R. and Rastall, R., 2001. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. Journal of Applied Microbiology 91: 878-887.
Crossref, MedlineGoogle Scholar
Salyers, A.A., West, S.E., Vercellotti, J. and Wilkins, T.D., 1977. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Applied Environmental Microbiology 34: 529-533.
MedlineGoogle Scholar
Sanchez, J.I., Marzorati, M., Grootaert, C., Baran, M., Van Craeyveld, V., Courtin, C.M., Broekaert, W.F., Delcour, J., Verstraete, W. and Van de Wiele, T., 2009. Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the simulator of human intestinal microbial ecosystem. Microbial Biotechnology 2: 101-113.
Crossref, MedlineGoogle Scholar
Sender, R., Fuchs, S. and Milo, R., 2016. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164: 337-340.
Crossref, MedlineGoogle Scholar
Sghir, A., Chow, J.M. and Mackie, R.I., 1998. Continuous culture selection of bifidobacteria and lactobacilli from human faecal samples using fructooligosaccharide as selective substrate. Journal of Applied Microbiology 85: 769-777.
Crossref, MedlineGoogle Scholar
Sharp, R. and Macfarlane, G.T., 2000. Chemostat enrichments of human feces with resistant starch are selective for adherent butyrate-producing clostridia at high dilution rates. Applied and Environmental Microbiology 66: 4212-4221.
Crossref, MedlineGoogle Scholar
Sonnenburg, E.D., Smits, S.A., Tikhonov, M., Higginbottom, S.K., Wingreen, N.S. and Sonnenburg, J.L., 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529: 212-215.
Crossref, MedlineGoogle Scholar
Sonnenburg, E.D. and Sonnenburg, J.L., 2014. Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metabolism 20: 779-786.
Crossref, MedlineGoogle Scholar
Stephen, A.M. and Cummings, J.H., 1980. The microbial contribution to human faecal mass. Journal of Medical Microbiology 13: 45-56.
Crossref, MedlineGoogle Scholar
Van den Abbeele, P., Belzer, C., Goossens, M., Kleerebezem, M., De Vos, W.M., Thas, O., De Weirdt, R., Kerckhof, F.-M. and Van de Wiele, T., 2013. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME Journal 7: 949-961.
Crossref, MedlineGoogle Scholar
Van den Abbeele, P., Gérard, P., Rabot, S., Bruneau, A., El Aidy, S., Derrien, M., Kleerebezem, M., Zoetendal, E.G. Smidt, H., Verstraete, W., Van de Wiele, T. and Possemiers, S., 2011. Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environmental Microbiology 13: 2667-2680.
Crossref, MedlineGoogle Scholar
Van Laere, K.M.J., Hartemink, R., Bosveld, M., Schols, H.A. and Voragen, A.G.J., 2000. Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. Journal of Agriculture and Food Chemistry 48: 1644-1652.
Crossref, MedlineGoogle Scholar
Velázquez, M., Davies, C., Marett, R., Slavin, J.L., Feirtag, J.M., 2000. Effect of oligosaccharides and fibre substitutes on short-chain fatty acid production by human faecal microflora. Anaerobe 6: 87-92.
CrossrefGoogle Scholar
Visnapuu, T., Mardo, K. and Alamäe, T., 2015. Levansucrases of a Pseudomonas syringae pathovar as catalysts for the synthesis of potentially prebiotic oligo- and polysaccharides. New Biotechnology 32: 597-605.
Crossref, MedlineGoogle Scholar
Walker, A.W., Ince, J., Duncan, S.H., Webster, L.M., Holtrop, G., Ze, X., Brown, D., Stares, M.D., Scott, P., Bergerat, A., Louis, P., McIntosh, F., Johnstone, A.M., Lobley, G.E., Parkhill, J. and Flint, H.J., 2011. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME Journal 5: 220-230.
Crossref, MedlineGoogle Scholar
Xia, J., Sinelnikov, I.V., Han, B. and Wishart, D.S., 2015. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Research 43: W251-W257.
Crossref, MedlineGoogle Scholar

New titles

Related titles:

< >

Issue Details

Beneficial Microbes


Beneficial Microbes

Publication Cover
Print ISSN: 1876-2883
Online ISSN: 1876-2891
Get Permission

2022 Journal Impact Factor 5.4
source: Journal Impact Factor 2023™ from Clarivate™

2022 CiteScore

Purchase Options

Institutional Offers

For institutional orders, please contact [email protected].