Abbas, H.K., Mirocha, C.J. and Tuite, J., 1986. Natural occurrence of deoxynivalenol, 15-acetyl-deoxynivalenol, and zearalenone in refusal factor corn stored since 1972. Applied and Environmental Microbiology 51: 841-843.
Google Scholar
Accensi, F., Pinton, P., Callu, P., Abella-Bourges, N., Guelfi, J.F., Grosjean, F. and Oswald, I.P., 2006. Ingestion of low doses of deoxynivalenol does not affect hematological, biochemical, or immune responses of piglets. Journal of Animal Science 84: 1935-1942.
CrossrefGoogle Scholar
Amuzie, C.J. and Pestka, J.J., 2010. Suppression of insulin-like growth factor acid-labile subunit expression – a novel mechanism for deoxynivalenol-induced growth retardation. Toxicological Science 113: 412-421.
CrossrefGoogle Scholar
Amuzie, C.J., Harkema, J.R. and Pestka, J.J., 2008. Tissue distribution and proinflammatory cytokine induction by the trichothecene deoxynivalenol in the mouse: comparison of nasal vs. oral exposure. Toxicology 248: 39-44.
Google Scholar
Amuzie, C.J., Shinozuka, J. and Pestka, J.J., 2009. Induction of suppressors of cytokine signaling by the trichothecene deoxynivalenol in the mouse. Toxicological Science 111: 277-287.
CrossrefGoogle Scholar
Arnold, D.L., McGuire, P.F., Nera, E.A., Karpinski, K.F., Bickis, M.G., Zawidzka, Z.Z., Fernie, S. and Vesonder, R.F., 1986. The toxicity of orally administered deoxynivalenol (vomitoxin) in rats and mice. Food and Chemical Toxicology 24: 935-941.
CrossrefGoogle Scholar
Azcona-Olivera, J.I., Ouyang, Y., Murtha, J., Chu, F.S. and Pestka, J.J., 1995. Induction of cytokine mRNAs in mice after oral exposure to the trichothecene vomitoxin (deoxynivalenol): relationship to toxin distribution and protein synthesis inhibition. Toxicology and Applied Pharmacology 133: 109-120.
CrossrefGoogle Scholar
Bae, H.K. and Pestka, J.J., 2008. Deoxynivalenol induces p38 interaction with the ribosome in monocytes and macrophages. Toxicological Science 105: 59-66.
CrossrefGoogle Scholar
Bae, H., Gray, J.S., Li, M., Vines, L., Kim, J. and Pestka, J.J., 2010. Hematopoetic cell kinase associates with the 40S ribosomal subunit and mediates the ribotoxic stress response to deoxynivalenol in mononuclear phagocytes. Toxicological Science 115: 444-452.
CrossrefGoogle Scholar
Bergsjo, B., Langseth, W., Nafstad, I., Jansen, J.H. and Larsen, H.J., 1993. The effects of naturally deoxynivalenol-contaminated oats on the clinical condition, blood parameters, performance and carcass composition of growing pigs. Veterinary Research Communications 17: 283-294. Google Scholar
Bergsjo, B., Matre, T. and Nafstad, I., 1992. Effects of diets with graded levels of deoxynivalenol on performance in growing pigs. Zentralblatt für Veterinärmedizin [Reihe A] 39: 752-758. Google Scholar
Bhat, R.V., Beedu, S.R., Ramakrishna, Y. and Munshi, K.L., 1989. Outbreak of trichothecene mycotoxicosis associated with consumption of mould-damaged wheat production in Kashmir Valley, India. The Lancet 333: 35-37.
CrossrefGoogle Scholar
Borison, H.L., 1989. Area postrema: chemoreceptor circumventricular organ of the medulla oblongata. Progress in Neurobiology 32: 351-390.
CrossrefGoogle Scholar
Canady, R.A., Coker, R.D., Rgan, S.K., Krska, R., Kuiper-Goodman, T., Olsen, M., Pestka, J.J., Resnik, S. and Schlatter, J., 2001. Deoxynivalenol, safety evaluation of certain mycotoxins in food. Fifty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Food Additives Series 47. World Health Organization, Geneva, Switzerland, pp. 420-555. Google Scholar
Cecarini, V., Gee, J., Fioretti, E., Amici, M., Angeletti, M., Eleuteri, A.M. and Keller, J.N., 2007. Protein oxidation and cellular homeostasis: emphasis on metabolism. Biochimica et Biophysica Acta 1773: 93-104.
Google Scholar
Cherla, R.P., Lee, S.Y., Mees, P.L. and Tesh, V.L., 2006. Shiga toxin 1-induced cytokine production is mediated by MAP kinase pathways and translation initiation factor eIF4E in the macrophage-like THP-1 cell line. Journal of Leukocyte Biology 79: 397-407.
CrossrefGoogle Scholar
Cherla, R.P., Lee, S.Y., Mulder, R.A., Lee, M.S. and Tesh, V.L., 2009. Shiga toxin 1-induced proinflammatory cytokine production is regulated by the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway. Infection and Immuninty 77: 3919-3931.
Google Scholar
Choi, H.J., Yang, H., Park, S.H. and Moon, Y., 2009. HuR/ELAVL1 RNA binding protein modulates interleukin-8 induction by muco-active ribotoxin deoxynivalenol. Toxicology and Applied Pharmacology 240: 46-54.
CrossrefGoogle Scholar
Chung, Y.J., Zhou, H.R. and Pestka, J.J., 2003. Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-alpha expression by deoxynivalenol (vomitoxin). Toxicology and Applied Pharmacology 193: 188-201.
CrossrefGoogle Scholar
Clark, D.E., Wellman, P.J., Harvey, R.B. and Lerma, M.S., 1987. Effects of vomitoxin (deoxynivalenol) on conditioned saccharin aversion and food consumption in adult rats. Pharmacology, Biochemistry and Behavior 27: 247-252.
CrossrefGoogle Scholar
Collins, T.F.X., Sprando, R.L., Black, T.N., Olejnik, N., Eppley, R.M., Hines, F.A., Rorie, J. and Ruggles, D.I., 2006. Effects of deoxynivalenol (DON, vomitoxin) on in utero development in rats. Food and Chemical Toxicology 44: 747-757.
CrossrefGoogle Scholar
Cote, L.M., Dahlem, A.M., Yoshizawa, T., Swanson, S.P. and Buck, W.B., 1986. Excretion of deoxynivalenol and its metabolite in milk, urine, and feces of lactating dairy cows. Journal of Dairy Science 69: 2416-2423.
CrossrefGoogle Scholar
Croker, B.A., Kiu, H. and Nicholson, S.E., 2008. SOCS regulation of the JAK/STAT signalling pathway. Seminars in Cell and Developmental Biology 19: 414-422.
CrossrefGoogle Scholar
Debouck, C., Haubruge, E., Bollaerts, P., Van Bignoot, D., Brostaux, Y., Werry, A. and Rooze, M., 2001. Skeletal deformities induced by the intraperitoneal administration of deoxynivalenol (vomitoxin) in mice. International Orthopaedics 25: 194-198.
CrossrefGoogle Scholar
English, B.K., Ihle, J.N., Myracle, A. and Yi, T., 1993. Hck tyrosine kinase activity modulates tumor necrosis factor production by murine macrophages. Journal of Experimental Medicine 178: 1017-1022.
CrossrefGoogle Scholar
Environmental Protection Agency (EPA), 2009. Intake of grain products. Exposure factors handbook 2009 update (external review draft). US Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC, USA, pp. 12i-12A12. Google Scholar
Eriksen, G.S. and Alexander, J., 1998. Fusarium toxins in cereals – a risk assessment. Nordic Council of Ministers, TemaNord 502, Copenhagen, Denmark, pp. 7-27 and 45-58. Google Scholar
Eriksen, G.S. and Pettersson, H., 2004. Toxicological evaluation of trichothecenes in animal feed. Animal Feed Science and Technology 114: 205-239. Google Scholar
Eriksen, G.S., Pettersson, H., Johnsen, K. and Lindberg, J.E., 2002. Transformation of trichothecenes in ileal digesta and faeces from pigs. Archives of Animal Nutrition-Archiv für Tierernährung 56: 263-274.
Google Scholar
Ernst, M., Inglese, M., Scholz, G.M., Harder, K.W., Clay, F.J., Bozinovski, S., Waring, P., Darwiche, R., Kay, T., Sly, P., Collins, R., Turner, D., Hibbs, M.L., Anderson, G.P. and Dunn, A.R., 2002. Constitutive activation of the SRC family kinase Hck results in spontaneous pulmonary inflammation and an enhanced innate immune response. Journal of Experimental Medicine 196: 589-604.
CrossrefGoogle Scholar
Fioramonti, J., Dupuy, C., Dupuy, J. and Bueno, L., 1993. The mycotoxin, deoxynivalenol, delays gastric emptying through serotonin-3 receptors in rodents. The Journal of Pharmacology and Experimental Therapeutics 266: 1255-1260.
Google Scholar
Fornelli, F., Minervini, F. and Mulè, G., 2004. Cytotoxicity induced by nivalenol, deoxynivalenol, and fumonisin B, in the SF-9 insect cell line. In Vitro Cellular and Developmental Biology – Animal 40: 166-171.
CrossrefGoogle Scholar
Forsell, J.H., Jensen, R., Tai, J.H., Witt, M., Lin, W.S. and Pestka, J.J., 1987. Comparison of acute toxicities of deoxynivalenol (vomitoxin) and 15-acetyldeoxynivalenol in the B6C3F1 mouse. Food and Chemical Toxicology 25: 155-162.
CrossrefGoogle Scholar
Forsell, J.H., Witt, M.F., Tai, J.H., Jensen, R. and Pestka, J.J., 1986. Effects of 8-week exposure of the B6C3F1 mouse to dietary deoxynivalenol (vomitoxin) and zearalenone. Food and Chemical Toxicology 24: 213-219.
CrossrefGoogle Scholar
Forsyth, D.M., Yoshizawa, T., Morooka, N. and Tuite, J., 1977. Emetic and refusal activity of deoxynivalenol to swine. Applied and Environmental Microbiology 34: 547-552.
Google Scholar
Friend, D.W., Trenholm, H.L., Elliot, J.I., Thompson, B.K. and Hartin, K.E., 1982. Effect of feeding vomitoxin-contaminated wheat to pigs. Canadian Journal of Animal Science 62: 1211-1222.
CrossrefGoogle Scholar
Froquet, R., Sibiril, Y. and Parent-Massin, D., 2001. Trichothecene toxicity on human megakaryocyte progenitors (CFU-MK). Human and Experimental Toxicology 20: 84-89.
CrossrefGoogle Scholar
Gareis, M., Bauer, J. and Gedek, J., 1987. On the metabolism of the mycotoxin deoxynivalenol in the isolated perfused rat liver. Mycotoxin Research 3: 25-32. Google Scholar
Goh, K.C., DeVeer, M.J. and Williams, B.R., 2000. The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin. EMBO Journal 19: 4292-4297.
CrossrefGoogle Scholar
Gouze, M.E., Laffitte, J., Pinton, P., Dedieux, G., Galinier, A., Thouvenot, J.P., Loiseau, N., Oswald, I.P. and Galtier, P., 2007. Effect of subacute oral doses of nivalenol on immune and metabolic defence systems in mice. Veterinary Research 38: 635-646. Google Scholar
Gray, J.S. and Pestka, J.J., 2007. Transcriptional regulation of deoxynivalenol-induced IL-8 expression in human monocytes. Toxicological Science 99: 502-511.
CrossrefGoogle Scholar
Gray, J.S., Bae, H.K., Li, J.C., Lau, A.S. and Pestka, J.J., 2008. Double-stranded RNA-activated protein kinase mediates induction of interleukin-8 expression by deoxynivalenol, Shiga toxin 1, and ricin in monocytes. Toxicological Science 105: 322-330.
CrossrefGoogle Scholar
Grove, J.F., 1988. Non-macrocyclic trichothecenes. Natural Product Reports 5: 187-209. Google Scholar
Grove, J.F., 1993. Macrocyclic trichothecenes. Natural Product Reports 10: 429-448. Google Scholar
Grove, J.F., 2000. Non-macrocyclic trichothecenes. Part 2. Progress in the Chemistry of Organic Natural Products 69: 1-70. Google Scholar
He, K., Vines, L. and Pestka, J.J., 2010. Deoxynivalenol-induced modulation of microRNA expression in RAW 264.7 macrophages – a potential novel mechanism for translational inhibition. The Toxicologist (Toxicological Sciences Suppl.) 2010: 114. Google Scholar
He, P., Young, L.G. and Forsberg, C., 1992. Microbial transformation of deoxynivalenol (vomitoxin). Applied and Environmental Microbiology 58: 3857-3863.
CrossrefGoogle Scholar
Hedman, R. and Pettersson, H., 1997. Transformation of nivalenol by gastrointestinal microbes. Archiv für Tierernährung 50: 321-329.
CrossrefGoogle Scholar
Hinoshita, F., Hashimoto, H., Hiroi, T., Kiyono, H., Ishikawa, H., Marumo, F. and Ueno, Y., 2000. Nivalenol as a possible risk in IgA nephropathy. Journal of the Japanese Association of Mycotoxicology 50: 45-51.
Google Scholar
Hinoshita, F., Suzuki, Y., Yokoyama, K., Hara, S., Yamada, A., Ogura, Y., Hashimoto, H., Tomura, S., Marumo, F. and Ueno, Y., 1997. Experimental IgA nephropathy induced by a low-dose environmental mycotoxin, nivalenol. Nephron 75: 469-478.
CrossrefGoogle Scholar
Hopton, R.P., Turner, E., Burley, V.J., Turner, P.C. and Fisher, J., 2010. Urine metabolite analysis as a function of deoxynivalenol exposure: an NMR-based metabolomics investigation. Food Additives and Contaminants Part A 27: 255-261.
CrossrefGoogle Scholar
Hsia, C.C., Wu, Z.Y., Li, Y.S., Zhang, F. and Sun, Z.T., 2004. Nivalenol, a main Fusarium toxin in dietary foods from high-risk areas of cancer of esophagus and gastric cardia in China, induced benign and malignant tumors in mice. Oncology Reports 12: 449-456. Google Scholar
Hughes, D.M., Gahl, M.J., Graham, C.H. and Grieb, S.L., 1999. Overt signs of toxicity to dogs and cats of dietary deoxynivalenol. Journal of Animal Science 77: 693-700.
CrossrefGoogle Scholar
Hunder, G., Schumann, K., Strugala, G., Gropp, J., Fichtl, B. and Forth, W., 1991. Influence of subchronic exposure to low dietary deoxynivalenol, a trichothecene mycotoxin, on intestinal absorption of nutrients in mice. Food and Chemical Toxicology 29: 809-814.
CrossrefGoogle Scholar
International Agency for Research on Cancer (IARC), 1993. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Monograph on the evaluation of carcinogenic risks to humans, Vol. 56. IARC, Lyon, France, 599 pp. Google Scholar
Islam, Z. and Pestka, J.J., 2003a. Role of IL-1 beta in endotoxin potentiation of deoxynivalenol-induced corticosterone response and leukocyte apoptosis in mice. Toxicological Sciences 74: 93-102. Google Scholar
Islam, Z. and Pestka, J.J., 2003b. Role of IL-1 beta in LPS potentiation of deoxynivalenol-induced leukocyte apoptosis in mice. Toxicological Sciences 72: 1605. Google Scholar
Islam, Z. and Pestka, J.J., 2006. LPS priming potentiates and prolongs proinflammatory cytokine response to the trichothecene deoxynivalenol in the mouse. Toxicology and Applied Pharmacology 211: 53-63.
CrossrefGoogle Scholar
Islam, Z., Gray, J.S. and Pestka, J.J., 2006. p38 mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes. Toxicology and Applied Pharmacology 213: 235-244.
CrossrefGoogle Scholar
Islam, Z., King, L.E., Fraker, P.J. and Pestka, J.J., 2003. Differential induction of glucocorticoid-dependent apoptosis in murine lymphoid subpopulations in vivo following coexposure to lipopolysaccharide and vomitoxin (deoxynivalenol). Toxicology and Applied Pharmacology 187: 69-79.
CrossrefGoogle Scholar
Islam, Z., Moon, Y.S., Zhou, H.R., King, L.E., Fraker, P.J. and Pestka, J.J., 2002. Endotoxin potentiation of trichothecene-induced lymphocyte apoptosis is mediated by up-regulation of glucocorticoids. Toxicology and Applied Pharmacology 180: 43-55.
CrossrefGoogle Scholar
Islam, Z., Nagase, M., Ota, A., Ueda, S., Yoshizawa, T. and Sakato, N., 1998a. Structure-function relationship of T-2 toxin and its metabolites in inducing thymic apoptosis in vivo in mice. Bioscience, Biotechnololy, and Biochemistry 62: 1492-1497.
Google Scholar
Islam, Z., Nagase, M., Yoshizawa, T., Yamauchi, K.E. and Sakato, N., 1998b. T-2 toxin induces thymic apoptosis in vivo in mice. Toxicology and Applied Pharmacology 148: 205-214.
CrossrefGoogle Scholar
Ito, Y., 1986. Effects of nivalenol on pregnancy and fetal development of mice. Mycotoxin Research 2: 71-77. Google Scholar
Ito, Y., 1988. Embryotoxicity of oral nivalenol in mice. Maikotokishin (Tokyo) [in Japanese; only abstract available (in English)] 27: 33-36. Google Scholar
Iverson, F., Armstrong, C., Nera, E., Truelove, J., Fernie, S., Scott, P., Stapley, R., Hayward, S. and Gunner, S., 1995. Chronic feeding study of deoxynivalenol in B6C3F1 male and female mice. Teratogenesis, Carcinogenesis and Mutagenesis 15: 283-306.
CrossrefGoogle Scholar
Jackson, L.S. and Bullerman, L.B., 1999. Effect of processing on Fusarium mycotoxins. Advances in Experimental Medicine and Biology 459: 243-261.
Google Scholar
Jia, Q., Shi, Y., Bennink, M.B. and Pestka, J.J., 2004. Docosahexaenoic acid and eicosapentaenoic acid, but not alpha-linolenic acid, suppress deoxynivalenol-induced experimental IgA nephropathy in mice. Journal of Nutrition 134: 1353-1361.
CrossrefGoogle Scholar
Jia, Q., Zhou, H.R., Shi, Y. and Pestka, J.J., 2006. Docosahexaenoic acid consumption inhibits deoxynivalenol-induced CREB/ATF1 activation and IL-6 gene transcription in mouse macrophages. Journal of Nutrition 136: 366-372.
CrossrefGoogle Scholar
Joffe, A.Z., 1978. Fusarium poae and F. sporotichiodes as pricipal causal agents of alimentary toxic aleukia. In: Wyllie, T.D. and Morehouse, L.G. (eds.) Mycotoxic fungi, mycotoxins, mycotoxicoses: an encylcopedic handbook. Marcel Dekker, New York, NY, USA, pp. 21-86. Google Scholar
Khera, K.S., Arnold, D.L., Whalen, C., Angers, G. and Scott, P.M., 1984. Vomitoxin (4-deoxynivalenol): effects on reproduction of mice and rats. Toxicology and Applied Pharmacology 74: 345-356.
CrossrefGoogle Scholar
Khera, K.S., Whalen, C. and Angers, G., 1986. A teratology study on vomitoxin (4-deoxynivalenol) in rabbits. Food and Chemical Toxicology 24: 421-424.
CrossrefGoogle Scholar
Khera, K.S., Whalen, C., Angers, G., Vesonder, R.F. and Kuiper-Goodman, T., 1982. Embryotoxicity of 4-deoxynivalenol (vomitoxin) in mice. Bulletin of Environmental Contamination and Toxicology 29: 487-491.
CrossrefGoogle Scholar
Kincaid, M.M. and Cooper, A.A., 2007. Misfolded proteins traffic from the endoplasmic reticulum (ER) due to ER export signals. Molecular Biology of the Cell 18: 455-463.
CrossrefGoogle Scholar
Kinser, S., Jia, Q., Li, M., Laughter, A., Cornwell, P., Corton, J.C. and Pestka, J., 2004. Gene expression profiling in spleens of deoxynivalenol-exposed mice: immediate early genes as primary targets. Journal of Toxicology and Environmental Health Part A 67: 1423-1441.
CrossrefGoogle Scholar
Kinser, S., Li, M.X., Jia, Q.S. and Pestka, J.J., 2005. Truncated deoxynivalenol-induced splenic immediate early gene response in mice consuming (n-3) polyunsaturated fatty acids. Journal of Nutritional Biochemistry 16: 88-95.
CrossrefGoogle Scholar
Kolf-Clauw, M., Castellote, J., Joly, B., Bourges-Abella, N., Raymond-Letron, I., Pinton, P. and Oswald, I.P., 2009. Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: histopathological analysis. Toxicology in Vitro 23: 1580-1584.
CrossrefGoogle Scholar
Korcheva, V., Wong, J., Lindauer, M., Jacoby, D.B., Iordanov, M.S. and Magun, B., 2007. Role of apoptotic signaling pathways in regulation of inflammatory responses to ricin in primary murine macrophages. Molecular Immunology 44: 2761-2771.
CrossrefGoogle Scholar
Krantis, A. and Durst, T., 2002. Novel multi-ring organic compounds for regulating gut motility and food intake. Patent WO/2002/055522, 54 pp. Google Scholar
Kubosaki, A., Aihara, M., Park, B.J., Sugiura, Y., Shibutani, M., Hirose, M., Suzuki, Y., Takatori, K. and Sugita-Konishi, Y., 2008. Immunotoxicity of nivalenol after subchronic dietary exposure to rats. Food and Chemical Toxicology 46: 253-258.
CrossrefGoogle Scholar
Kuiper-Goodman, T., 1994. Prevention of mycotoxicses through risk management and risk assessment. In: Miller, J.D. and Trenholm, H.L. (eds.) Mycotoxins in grain. Eagan Press, St.Paul, MN, USA, pp. 439-469. Google Scholar
Lake, B.G., Phillips, J.C., Walters, D.G., Bayley, D.L., Cook, M.W., Thomas, L.V., Gilbert, J., Startin, J.R., Baldwin, N.C. and Bycroft, B.W., 1987. Studies on the metabolism of deoxynivalenol in the rat. Food and Chemical Toxicology 25: 589-592.
CrossrefGoogle Scholar
Lautraite, S., Parent, M.D., Rio, B. and Hoellinger, H., 1997. In vitro toxicity induced by deoxynivalenol (DON) on human and rat granulomonocytic progenitors. Cell Biology and Toxicology 13: 175-183.
CrossrefGoogle Scholar
Le Drean, G., Auffret, M., Batina, P., Arnold, F., Sibiril, Y., Arzur, D. and Parent-Massin, D., 2005. Myelotoxicity of trichothecenes and apoptosis: an in vitro study on human cord blood CD34(+) hematopoietic progenitor. Toxicology in Vitro 19: 1015-1024.
CrossrefGoogle Scholar
Le Loir, Y., Baron, F. and Gautier, M., 2003. Staphylococcus aureus and food poisoning. Genetics and Molecular Research 2: 63-76. Google Scholar
Lewis, C.W., Smith, J.E., Anderson, J.G. and Freshney, R.I., 1999. Increased cytotoxicity of food-borne mycotoxins toward human cell lines in vitro via enhanced cytochrome p450 expression using the MTT bioassay. Mycopathologia 148: 97-102.
CrossrefGoogle Scholar
Leyva-Illades, D., Cherla, R.P., Galindo, C.L., Chopra, A.K. and Tesh, V.L., 2010. Global transcriptional response of macrophage-like THP-1 cells to Shiga toxin type 1. Infection and Immunity 78: 2454-2465.
CrossrefGoogle Scholar
Li, M.X. and Pestka, J.J., 2008. Comparative induction of 28S ribosomal RNA cleavage by ricin and the trichothecenes deoxynivalenol and T-2 toxin in the macrophage. Toxicological Sciences 105: 67-78.
CrossrefGoogle Scholar
Li, P.K.T., Leung, C.B., Chow, K.M., Cheng, Y.L., Fung, S.K.S., Mak, S.K., Tang, A.W.C., Wong, T.Y.H., Yung, C.Y., Yung, J.C.U., Yu, A.W.Y., Szeto, C.C. and HKVIN study group, 2006. Hong Kong study using valsartan in IgA nephropathy (HKVIN): a double-blind, randomized, placebo-controlled study. American Journal of Kidney Diseases 47: 751-760.
CrossrefGoogle Scholar
Li, S., Ouyang, Y., Yang, G.H. and Pestka, J.J., 2000. Modulation of transcription factor AP-1 activity in murine EL-4 thymoma cells by vomitoxin (deoxynivalenol). Toxicology and Applied Pharmacology 163: 17-25.
CrossrefGoogle Scholar
Li, S.G., Ouyang, Y.L., Dong, W.M. and Pestka, J.J., 1997. Superinduction of IL-2 gene expression by vomitoxin (deoxynivalenol) involves increased mRNA stability. Toxicology and Applied Pharmacology 147: 331-342.
CrossrefGoogle Scholar
Li, Y., 2007. Sensory signal transduction in the vagal primary afferent neurons. Current Medicinal Chemistry 14: 2554-2563.
CrossrefGoogle Scholar
Luo, X., 1994. Food poisoning caused by Fusarium toxins, 1994. In: Proceedings of the Second Asian Conference on Food Safety. ILSI, Bangkok, Thailand, pp. 129-136. Google Scholar
Luongo, D., Severino, L., Bergamo, P., D'Arienzo, R. and Rossi, M., 2010. Trichothecenes NIV and DON modulate the maturation of murine dendritic cells. Toxicon 55: 73-80.
CrossrefGoogle Scholar
Madej, M., Lundh, T. and Lindberg, J.E., 1999. Effect of exposure to dietary nivalenol on activity of enzymes involved in glutamine catabolism in the epithelium along the gastrointestinal tract of growing pigs. Archives of Animal Nutrition 52: 275-284.
Google Scholar
Maresca, M., Mahfoud, R., Garmy, N. and Fantini, J., 2002. The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells. Journal of Nutrition 132: 2723-2731.
CrossrefGoogle Scholar
Maresca, M., Yahi, N., Younes-Sakr, L., Boyron, M., Caporiccio, B. and Fantini, J., 2008. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: stimulation of interleukin-8 secretion, potentiation of interleukin-1 beta effect and increase in the transepithelial passage of commensal bacteria. Toxicology and Applied Pharmacology 228: 84-92.
CrossrefGoogle Scholar
Marzocco, S., Russo, R., Bianco, G., Autore, G. and Severino, L., 2009. Pro-apoptotic effects of nivalenol and deoxynivalenol trichothecenes in J774A.1 murine macrophages. Toxicology Letters 189: 21-26. Google Scholar
Matsuoka, Y., Kubota, K. and Ueno, Y., 1979. General pharmacological studies of fusarenon-X, a trichothecene mycotoxin from Fusiarium species. Toxicology and Applied Pharmacology 50: 87-94.
CrossrefGoogle Scholar
McMullen, M., Jones, R. and Gallenberg, D., 1997. Scab of wheat and barley: a re-emerging disease of devasting impact. Plant Disease 81: 1340-1348.
CrossrefGoogle Scholar
Meky, F.A., Turner, P.C., Ashcroft, A.E., Miller, J.D., Qiao, Y.L., Roth, M.J. and Wild, C.P., 2003. Development of a urinary biomarker of human exposure to deoxynivalenol. Food and Chemical Toxicology 41: 265-273.
CrossrefGoogle Scholar
Miura, K., Nakajima, Y., Yamanaka, N., Terao, K., Shibato, T. and Ishino, S., 1998. Induction of apoptosis with fusarenon-X in mouse thymocytes. Toxicology 127: 195-206.
CrossrefGoogle Scholar
Moon, Y. and Pestka, J.J., 2002. Vomitoxin-induced cyclooxygenase-2 gene expression in macrophages mediated by activation of ERK and p38 but not JNK mitogen-activated protein kinases. Toxicological Sciences 69: 373-382.
CrossrefGoogle Scholar
Moon, Y. and Pestka, J.J., 2003. Deoxynivalenol-induced mitogen-activated protein kinase phosphorylation and IL-6 expression in mice suppressed by fish oil. Journal of Nutritional Biochemistry 14: 717-726.
CrossrefGoogle Scholar
Moon, Y., Uzarski, R. and Pestka, J.J., 2003. Relationship of trichothecene structure to COX-2 induction in the macrophage: selective action of type B (8-keto) trichothecenes. Journal of Toxicology and Environmental Health Part A 66: 1967-1983.
CrossrefGoogle Scholar
Morrissey, R.E., 1984. Teratological study of Fischer rats fed diet containing added vomitoxin. Food and Chemical Toxicology 22: 453-457.
CrossrefGoogle Scholar
Morrissey, R.E. and Vesonder, R.F., 1985. Effect of deoxynivalenol (vomitoxin) on fertility, pregnancy, and postnatal development of Sprague-Dawley rats. Applied and Environmental Microbiology 49: 1062-1066.
Google Scholar
Nagase, M., Alam, M.M., Tsushima, A., Yoshizawa, T. and Sakato, N., 2001. Apoptosis induction by T-2 toxin: activation of caspase-9, caspase-3, and DFF-40/CAD through cytosolic release of cytochrome c in HL-60 cells. Bioscience, Biotechnology, and Biochemistry 65: 1741-1747.
CrossrefGoogle Scholar
Nagashima, H., Nakagawa, H., Kushiro, M. and Iwashita, K., 2009. The in vitro approach to the cytotoxicity of a trichothecene mycotoxin nivalenol. Japan Agricultural Research Quarterly 43: 7-11. Google Scholar
Nejdfors, P., Ekelund, M., Jeppsson, B. and Westrom, B.R., 2000. Mucosal in vitro permeability in the intestinal tract of the pig, the rat, and man: spe. Scandinavean Journal of Gastroenterology 35: 501-507.
Google Scholar
Nielsen, C., Lippke, H., Didier, A., Dietrich, R. and Martlbauer, E., 2009. Potential of deoxynivalenol to induce transcription factors in human hepatoma cells. Molecular Nutrition and Food Research 53: 479-491. Google Scholar
Ohtsubo, K., Ryu, J.C., Nakamura, K., Izumiyama, N., Tanaka, T., Yamamura, H., Kobayashi, T. and Ueno, Y., 1989. Chronic toxicity of nivalenol in female mice: a 2-year feeding study with Fusarium nivale Fn 2B-moulded rice. Food and Chemical Toxicology 27: 591-598.
CrossrefGoogle Scholar
Onji, Y., Dohi, Y., Aoki, Y., Moriyama, T., Nagami, H., Uno, M., Tanaka, T. and Yamazoe, Y., 1989. Deepoxynivalenol – a new metabolite of nivalenol found in the excreta of orally-administered rats. Journal of Agricultural and Food Chemistry 37: 478-481.
CrossrefGoogle Scholar
Ossenkopp, K.P., Hirst, M. and Rapley, W.A., 1994. Deoxynivalenol (vomitoxin)-induced conditioned taste aversions in rats are mediated by the chemosensitive area postrema. Pharmacology, Biochemistry and Behavior 47: 363-367.
CrossrefGoogle Scholar
Ouyang, Y.L., Li, S. and Pestka, J.J., 1996. Effects of vomitoxin (deoxynivalenol) on transcription factor NF-kappa B/Rel binding activity in murine EL-4 thymoma and primary CD4+ T cells. Toxicology and Applied Pharmacology 140: 328-336.
CrossrefGoogle Scholar
Parent-Massin, D., 2004. Haematotoxicity of trichothecenes. Toxicology Letters 153: 75-81.
CrossrefGoogle Scholar
Paterson, R.R.M. and Lima, N., 2010. How will climate change affect mycotoxins in food? Food Research International 43: 1902-1914. Google Scholar
Pestka, J.J., 2003. Deoxynivalenol-induced IgA production and IgA nephropathy-aberrant mucosal immune response with systemic repercussions. Toxicology Letters 140-141: 287-295. Google Scholar
Pestka, J.J., 2007. Deoxynivalenol: toxicity, mechanisms and animal health risks. Animal Feed Science and Technology 137: 283-298.
CrossrefGoogle Scholar
Pestka, J.J., 2008. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Additives and Contaminants Part A 25: 1128-1140.
CrossrefGoogle Scholar
Pestka, J.J. and Amuzie, C.J., 2008. Tissue distribution and proinflammatory cytokine gene expression following acute oral exposure to deoxynivalenol: comparison of weanling and adult mice. Food and Chemical Toxicology 46: 2826-2831.
CrossrefGoogle Scholar
Pestka, J.J., Islam, Z. and Amuzie, C.J., 2008. Immunochemical assessment of deoxynivalenol tissue distribution following oral exposure in the mouse. Toxicology Letters 178: 83-87.
CrossrefGoogle Scholar
Pestka, J.J., Lin, W.S. and Forsell, J.H., 1986. Decreased feed consumption and body-weight gain in the B6C3F1 mouse after dietary exposure to 15-acetyldeoxynivalenol. Food and Chemical Toxicology 24: 1309-1313.
CrossrefGoogle Scholar
Pestka, J.J., Lin, W.S. and Miller, E.R., 1987. Emetic activity of the trichothecene 15-acetyldeoxynivalenol in swine. Food and Chemical Toxicology 25: 855-858.
CrossrefGoogle Scholar
Pestka, J.J., Uzarski, R.L. and Islam, Z., 2005. Induction of apoptosis and cytokine production in the Jurkat human T cells by deoxynivalenol: role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes. Toxicology 206: 207-219.
CrossrefGoogle Scholar
Pestka, J.J., Yan, D. and King, L.E., 1994. Flow cytometric analysis of the effects of in vitro exposure to vomitoxin (deoxynivalenol) on apoptosis in murine T, B and IgA+ cells. Food and Chemical Toxicology 32: 1125-1136.
CrossrefGoogle Scholar
Pestka, J.J., Zhou, H.R., Moon, Y. and Chung, Y.J., 2004. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicology Letters 153: 61-73.
CrossrefGoogle Scholar
Pieters, M.N., Freijer, J., Baars, B.J., Fiolet, D.C.M., Van Klaveren, J. and Slob, W., 2002. Risk assessment of deoxynivalenol in food: concentration limits, exposure and effects. In: DeVries, J.W., Trucksess, M.W. and Jackson, L.S. (eds.) Mycotoxins and food safety. Advances in experimental medicine and biology. Kluwer Academic, New York, NY, USA, pp. 235-248. Google Scholar
Pinton, P., Nougayrede, J.P., Del Rio, J.C., Moreno, C., Marin, D.E., Ferrier, L., Bracarense, A.P., Kolf-Clauw, M. and Oswald, I.P., 2009. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicology and Applied Pharmacology 237: 41-48.
CrossrefGoogle Scholar
Poapolathep, A., Kumagai, S., Suzuki, H. and Doi, K., 2004. Development of early apoptosis and changes in T-cell subsets in mouse thymocyte primary cultures treated with nivalenol. Experimental and Molecular Pathology 77: 149-152.
CrossrefGoogle Scholar
Poapolathep, A., Ohtsuka, R., Kiatipattanasakul, W., Ishigami, N., Nakayama, H. and Doi, K., 2002. Nivalenol-induced apoptosis in thymus, spleen and Peyer's patches of mice. Experimental and Toxicologic Pathology 53: 441-446.
CrossrefGoogle Scholar
Poapolathep, A., Sugita-Konishi, Y., Doi, K. and Kumagai, S., 2003. The fates of trichothecene mycotoxins, nivalenol and fusarenon-X, in mice. Toxicon 41: 1047-1054.
CrossrefGoogle Scholar
Prelusky, D.B., 1993. The effect of low-level deoxynivalenol on neurotransmitter levels measured in pig cerebral spinal fluid. Journal of Environmental Science and Health Part B 28: 731-761.
CrossrefGoogle Scholar
Prelusky, D.B., 1994. The effect of deoxynivalenol on serotoninergic neurotransmitter levels in pig blood. Journal of Environmental Science and Health Part B 29: 1203-1218.
CrossrefGoogle Scholar
Prelusky, D.B. and Trenholm, H.L., 1991a. Non-accumulation of residues in swine consuming deoxynivalenol-contaminated diets. Journal of Food Science 57: 801-802.
CrossrefGoogle Scholar
Prelusky, D.B. and Trenholm, H.L., 1991b. Tissue distribution of deoxynivalenol in swine dosed intravenously. Journal of Agricultural and Food Chemistry 39: 748-752.
CrossrefGoogle Scholar
Prelusky, D.B. and Trenholm, H.L., 1993. The efficacy of various classes of anti-emetics in preventing deoxynivalenol-induced vomiting in swine. Natural Toxins 1: 296-302.
CrossrefGoogle Scholar
Prelusky, D.B., Gerdes, R.G., Underhill, K.L., Rotter, B.A., Jui, P.Y. and Trenholm, H.L., 1994. Effects of low-level dietary deoxynivalenol on haematological and clinical parameters of the pig. Natural Toxins 2: 97-104.
CrossrefGoogle Scholar
Prelusky, D.B., Hamilton, R.M. and Trenholm, H.L., 1989. Transmission of residues to eggs following long-term administration of 14C-labelled deoxynivalenol to laying hens. Poultry Science 68: 744-748.
CrossrefGoogle Scholar
Prelusky, D.B., Hartin, K.E., Trenholm, H.L. and Miller, J.D., 1988. Pharmacokinetic fate of 14C-labeled deoxynivalenol in swine. Fundamental and Applied Toxicology 10: 276-286.
CrossrefGoogle Scholar
Prelusky, D.B., Rotter, B.A., Thompson, B.K. and Trenholm, H.L., 1997. Effect of the appetite stimulant cyproheptadine on deoxynivalenol-induced reductions in feed consumption and weight gain in the mouse. Journal of Environmental Science and Health Part B 32: 429-448.
CrossrefGoogle Scholar
Pronk, M.E.J., Schothorst, R.C. and Van Egmond, H.P., 2002. Toxicology and occurrence of nivalenol, fusarenon X, diacetoxyscirpenol, neosolaniol and 3-and 15-acetylydeoxynivalenol: a review of six trichothecenes. RIVM Report 388802024/2002, National Institute for Public Health and the Environment, Bilthoven, the Netherlands, pp. 1-75. Google Scholar
Rio, B., Lautraite, S. and Parent-Massin, D., 1997. In vitro toxicity of trichoethecenes on human erythroblastic progenitors. Human and Experimental Toxicology 16: 673-679.
CrossrefGoogle Scholar
Robbana-Barnat, S., Loridon-Rosa, B., Cohen, H., Lafarge-Frayssinet, C., Neish, G.A. and Frayssinet, C., 1987. Protein synthesis inhibition and cardiac lesions associated with deoxynivalenol ingestion in mice. Food Additives and Contaminants 4: 49-56.
CrossrefGoogle Scholar
Rotter, B.A., Prelusky, D.B. and Pestka, J.J., 1996. Toxicology of deoxynivalenol (vomitoxin). Journal of Toxicology and Environmental Health Part A 48: 1-34.
CrossrefGoogle Scholar
Rotter, B.A., Thompson, B.K., Lessard, M., Trenholm, H.L. and Tryphonas, H., 1994a. Influence of low-level exposure to Fusarium mycotoxins on selected immunological and hematological parameters in young swine. Fundamental and Applied Toxicology 23: 117-124.
CrossrefGoogle Scholar
Rotter, B.A., Thompson, B.K. and Rotter, R.G., 1994b. Optimization of the mouse bioassay for deoxynivalenol as an alternative to large animal studies. Bulletin of Environmental Contamination and Toxicology 53: 642-647.
Google Scholar
Ryu, J.-C., Ohtsubo, K., Izumiyama, N., Nakamura, K., Tanaka, T., Yamamura, H. and Ueno, Y., 1988. The acute and chronic toxicities of nivalenol in mice. Fundamental and Applied Toxicology 11: 38-47.
CrossrefGoogle Scholar
Scientific Committee on Food (SCF), 2002. Opinion of the Scientific Committee on Food on Fusarium toxins. Part 6: Group evaluation of T-2 toxin, HT-2 toxin, nivalenol and deoxynivalenol. SCF/CS/ CNTM/MYC/27 Final. Available at: http://europa.eu.int/comm/food/fs/sc/scf/out123_en.pdf Google Scholar
Schoeni, J.L. and Wong, A.C., 2005. Bacillus cereus food poisoning and its toxins. Journal of Food Protection 68: 636-648.
CrossrefGoogle Scholar
Sergent, T., Parys, M., Garsou, S., Pussemier, L., Schneider, Y.J. and Larondelle, Y., 2006. Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations. Toxicology Letters 164: 167-176.
CrossrefGoogle Scholar
Severino, L., Luongo, D., Bergamo, P., Lucisano, A. and Rossi, M., 2006. Mycotoxins nivalenol and deoxynivalenol differentially modulate cytokine mRNA expression in Jurkat T cells. Cytokine 36: 75-82.
CrossrefGoogle Scholar
Shi, Y., Porter, K., Parameswaran, N., Bae, H.K. and Pestka, J.J., 2009a. Role of GRP78/BiP degradation and ER stress in deoxynivalenol-induced interleukin-6 upregulation in the macrophage. Toxicological Sciences 109: 247-255.
CrossrefGoogle Scholar
Shi, Y.H., Porter, K., Parameswaran, N., Bae, H.K. and Pestka, J.J., 2009b. Role of GRP78/BiP degradation and ER stress in deoxynivalenol-induced interleukin-6 upregulation in the macrophage (erratum). Toxicological Sciences 110: 249-250.
CrossrefGoogle Scholar
Shifrin, V.I. and Anderson, P., 1999. Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. Journal of Biological Chemistry 274: 13985-13992.
CrossrefGoogle Scholar
Sprando, R.L., Collins, T.F.X., Black, T.N., Olejnik, N., Rorie, J.I., Eppley, R.M. and Ruggles, D.I., 2005. Characterization of the effect of deoxynivalenol on selected male reproductive endpoints. Food and Chemical Toxicology 43: 623-635.
CrossrefGoogle Scholar
Starkey, D.E., Ward, T.J., Aoki, T., Gale, L.R., Kistler, H.C., Geiser, D.M., Suga, H., Toth, B., Varga, J. and O'Donnell, K., 2007. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genetics and Biology 44: 1191-1204.
CrossrefGoogle Scholar
Sugita-Konishi, Y. and Nakajiima, T., 2010. Nivalenol: the mycology, occurrence, toxicology, analysis and regulation. In: Rai, M. and Varma, A. (eds.) Mycotoxins in food, feed and bioweapons. Springer-Verlag, Berlin, Germany, pp. 253-273. Google Scholar
Sugita-Konishi, Y. and Pestka, J.J., 2001. Differential upregulation of TNF-alpha, IL-6, and IL-8 production by deoxynivalenol (vomitoxin) and other 8-ketotrichothecenes in a human macrophage model. Journal of Toxicology and Environmental Health Part A 64: 619-636.
CrossrefGoogle Scholar
Sugiyama, K., Muroi, M., Tanamoto, K., Nishijima, M. and Sugita-Konishi, Y., 2010. Deoxynivalenol and nivalenol inhibit lipopolysaccharide-induced nitric oxide production by mouse macrophage cells. Toxicology Letters 192: 150-154.
CrossrefGoogle Scholar
Swanson, S.P., Helaszek, C., Buck, W.B., Rood Jr., H.D. and Haschek, W.M., 1988. The role of intestinal microflora in the metabolism of trichothecene mycotoxins. Food and Chemical Toxicology 26: 823-829.
CrossrefGoogle Scholar
Szelenyi, I., Herold, H. and Gothert, M., 1994. Emesis induced in domestic pigs: a new experimental tool for detection of antiemetic drugs and for evaluation of emetogenic potential of new anticancer agents. Journal of Pharmacological and Toxicological Methods 32: 109-116.
CrossrefGoogle Scholar
Takahashi, M., Shibutani, M., Sugita-Konishi, Y., Aihara, M., Inoue, K., Woo, G.H., Fujimoto, H. and Hirose, M., 2008. A 90-day subchronic toxicity study of nivalenol, a trichothecene mycotoxin, in F344 rats. Food and Chemical Toxicology 46: 125-135.
CrossrefGoogle Scholar
Tatsuno, T., Saito, M., Enomoto, M. and Tsunoda, H., 1968. Nivalenol a toxic principle of Fusarium nivale. Chemical and Pharmaceutical Bulletin 16: 2519-2520. Google Scholar
Tep, J., Videmann, B., Mazallon, M., Balleydier, S., Cavret, S. and Lecoeur, S., 2007. Transepithelial transport of fusariotoxin nivalenol: mediation of secretion by ABC transporters. Toxicology Letters 170: 248-258.
CrossrefGoogle Scholar
Ting, J.P.Y., Duncan, J.A. and Lei, Y., 2010. How the noninflammasome NLRs function in the innate immune system. Science 327: 286-290.
CrossrefGoogle Scholar
Trenholm, H.L., Hamilton, R.M., Friend, D.W., Thompson, B.K. and Hartin, K.E., 1984. Feeding trials with vomitoxin (deoxynivalenol)-contaminated wheat: effects on swine, poultry, and dairy cattle. Journal of the American Veterinary Medical Association 185: 527-531.
Google Scholar
Tritscher, A.M. and Page, S.W., 2004. The risk assessment paradigm and its application for trichothecenes. Toxicology Letters 153: 155-163.
CrossrefGoogle Scholar
Tryphonas, H., Iverson, F., So, Y., Nera, E.A., McGuire, P.F., O'Grady, L., Clayson, D.B. and Scott, P.M., 1986. Effects of deoxynivalenol (vomitoxin) on the humoral and cellular immunity of mice. Toxicology Letters 30: 137-150.
CrossrefGoogle Scholar
Tsuda, S., Kosaka, Y., Murakami, M., Matsuo, H., Matsusaka, N., Taniguchi, K. and Sasaki, Y.F., 1998. Detection of nivalenol genotoxicity in cultured cells and multiple mouse organs by the alkaline single-cell gel electrophoresis assay. Mutation Research 415: 191-200. Google Scholar
Tsygankov, A.Y. and Shore, S.K., 2004. Src: regulation, role in human carcinogenesis and pharmacological inhibitors. Current Pharmaceutical Design 10: 1745-1756.
CrossrefGoogle Scholar
Turner, P.C., 2010. Deoxynivalenol and nivalenol occurrence and exposure assessment. World Mycotoxin Journal 3: 315-321
Wageningen Academic PublishersGoogle Scholar
Turner, P.C., Hopton, R.P., Lecluse, Y., White, K.L., Fisher, J. and Lebailly, P., 2010. Determinants of urinary deoxynivalenol and de-epoxy deoxynivalenol in male farmers from Normandy, France. Journal of Agricultural and Food Chemistry 58: 5206-5212.
CrossrefGoogle Scholar
Turner, P.C., Taylor, E.F., White, K.L.M., Cade, J.E. and Wild, C.P., 2009. A comparison of 24 h urinary deoxynivalenol with recent v. average cereal consumption for UK adults. British Journal of Nutrition 102: 1276-1284.
Google Scholar
Ueno, Y., 1983. General toxicology. In: Ueno, Y. (ed.) Trichothecenes: chemical, biological, and toxicological aspects. Elsevier, New York, NY, USA, pp. 135-146. Google Scholar
Ueno, Y., 1984. Toxicological features of T-2 toxin and related trichothecenes. Fundamental and Applied Toxicology 4: S124-S132.
CrossrefGoogle Scholar
Ueno, Y., Kobayashi, T., Yamamura, H., Kato, T., Tashiro, F., Nakamura, K. and Ohtsubo, K., 1991. Effect of long-term feeding of nivalenol on aflatoxin B1-initiated hepatocarcinogenesis in mice. IARC Scientific Publications 105: 420-423.
Google Scholar
Ueno, Y., Yabe, T., Hashimoto, H., Sekijima, M., Masuda, T., Kim, D.J., Hasegawa, R. and Ito, N., 1992. Enhancement of Gst-P-positive liver-cell foci development by nivalenol, a trichothecene mycotoxin. Carcinogenesis 13: 787-791.
CrossrefGoogle Scholar
Uzarski, R.L. and Pestka, J.J., 2003. Comparative susceptibility of B cells with different lineages to cytotoxicity and apoptosis induction by translational inhibitors. Journal of Toxicology and Environmental Health Part A 66: 2105-2118.
CrossrefGoogle Scholar
Uzarski, R.L., Islam, Z. and Pestka, J.J., 2003. Potentiation of trichothecene-induced leukocyte cytotoxicity and apoptosis by TNF-alpha and Fas activation. Chemical and Biological Interactions 146: 105-119.
CrossrefGoogle Scholar
Van der Heyden, S., Goossens, J., Vandenbroucke, V., Vercauteren, G., Chiers, K., Pasmans, F., Haesebrouck, F., De Backer, P., Croubels, S. and Ducatelle, R., 2009. Reduced expression of intestinal P-glycoprotein following ingestion of deoxynivalenol (DON) contaminatad feed in pigs. Journal of Comparative Pathology 141: 272. Google Scholar
Vesonder, R.F., Ciegler, A. and Jensen, A.H., 1973. Isolation of the emetic principle from Fusarium-infected corn. Applied Microbiology 26: 1008-1010.
Google Scholar
Voss, K.A., 2010. A new perspective on deoxynivalenol and growth suppression. Toxicological Sciences 113: 281-283.
CrossrefGoogle Scholar
Williams, B.R., 2001. Signal integration via PKR. Science's STKE 2001: RE2. Google Scholar
Williams, K.C. and Blaney, B.J., 1994. Effect of the mycotoxins, nivalenol and zearalenone, in maize naturally infected with Fusarium graminearum on the performance of growing and pregnant pigs. Australian Journal of Agricultural Research 45: 1265-1279. Google Scholar
Wong, S., Schwartz, R.C. and Pestka, J.J., 2001. Superinduction of TNF-alpha and IL-6 in macrophages by vomitoxin (deoxynivalenol) modulated by mRNA stabilization. Toxicology 161: 139-149.
CrossrefGoogle Scholar
Wong, S.S., Zhou, H.R. and Pestka, J.J., 2002. Effects of vomitoxin (deoxynivalenol) on the binding of transcription factors AP-1, NF-kappaB, and NF-IL6 in raw 264.7 macrophage cells. Journal of Toxicology and Environmental Health Part A 65: 1161-1180. Google Scholar
Worrell, N.R., Mallett, A.K., Cook, W.M., Baldwin, N.C. and Shepherd, M.J., 1989. The role of gut micro-organisms in the metabolism of deoxynivalenol administered to rats. Xenobiotica 19: 25-32.
CrossrefGoogle Scholar
Xu, J., Yang, S., Cai, S., Dong, J., Li, X. and Chen, Z., 2010. Identification of biochemical changes in lactovegetarian urine using 1H NMR spectroscopy and pattern recognition. Analytical and Bioanalytical Chemistry 396: 1451-1463.
CrossrefGoogle Scholar
Yang, G.H., Jarvis, B.B., Chung, Y.J. and Pestka, J.J., 2000a. Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicology and Applied Pharmacology 164: 149-160.
CrossrefGoogle Scholar
Yang, G.H., Li, S. and Pestka, J.J., 2000b. Down-regulation of the endoplasmic reticulum chaperone GRP78/BiP by vomitoxin (deoxynivalenol). Toxicology and Applied Pharmacology 162: 207-217.
CrossrefGoogle Scholar
Yorimitsu, T. and Klionsky, D.J., 2005. Autophagy: molecular machinery for self-eating. Cell Death and Differentiation 12 Suppl. 2: 1542-1552. Google Scholar
Yoshino, N., Takizawa, M., Akiba, H., Okumura, H., Tashiro, F., Honda, M. and Ueno, Y., 1996. Transient elevation of intracellular calcium ion levels as an early event in T-2 toxin-induced apoptosis in human promyelotic cell line HL-60. Natural Toxins 4: 234-241.
CrossrefGoogle Scholar
Yoshizawa, T., 1983. Red-mold diseases and natural occurence in Japan. In: Ueno, Y. (ed.) Trichothecenes, chemical, biological, and toxicological aspects. Kodansha Ltd., Tokyo, Japan, pp. 195-209. Google Scholar
Yoshizawa, T. and Morooka, N., 1973. Deoxynivalenol and its monoacetate: new mycotoxins from Fusaruium roseum and moldy barley. Agricultural and Biological Chemistry 37: 2933-2934.
CrossrefGoogle Scholar
Yoshizawa, T. and Morooka, N., 1977. Trichothecenes in mold infested cereals in Japan. In: Rodricks, J.V., Hesseltine, C.W. and Mehlman, M.A. (eds.) Mycotoxins in human and animal health. Pathotox Publishers Inc., Park Forest South, IL, USA, pp. 309-321. Google Scholar
Yoshizawa, T., Cote, L.M., Swanson, S.P. and Buck, W.B., 1986. Confirmation of DOM-1, a de-epoxidation metabolite of deoxynivalenol, in biological fluids of lactating cows. Agricultural and Biological Chemistry 50: 227-229.
CrossrefGoogle Scholar
Young, L.G., McGirr, L., Valli, V.E., Lumsden, J.H. and Lun, A., 1983. Vomitoxin in corn fed to young pigs. Journal of Animal Science 57: 655-664.
CrossrefGoogle Scholar
Zhang, J.B., Li, H.P., Dang, F.J., Qu, B., Xu, Y.B., Zhao, C.S. and Liao, Y.C., 2007. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycological Research 111: 967-975. Google Scholar
Zhou, H.R., Harkema, J.R., Hotchkiss, J.A., Yan, D., Roth, R.A. and Pestka, J.J., 2000. Lipopolysaccharide and the trichothecene vomitoxin (deoxynivalenol) synergistically induce apoptosis in murine lymphoid organs. Toxicological Science 53: 253-263.
CrossrefGoogle Scholar
Zhou, H.R., Harkema, J.R., Yan, D. and Pestka, J.J., 1999. Amplified proinflammatory cytokine expression and toxicity in mice coexposed to lipopolysaccharide and the trichothecene vomitoxin (deoxynivalenol). Journal of Toxicology and Environmental Health Part A 57: 115-136.
CrossrefGoogle Scholar
Zhou, H.R., Islam, Z. and Pestka, J.J., 2003a. Kinetics of lipopolysaccharide-induced transcription factor activation/inactivation and relation to proinflammatory gene expression in the murine spleen. Toxicology and Applied Pharmacology 187: 147-161.
CrossrefGoogle Scholar
Zhou, H.R., Islam, Z. and Pestka, J.J., 2003b. Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin. Toxicological Science 72: 130-142.
CrossrefGoogle Scholar
Zhou, H.R., Islam, Z. and Pestka, J.J., 2005a. Induction of competing apoptotic and survival signaling pathways in the macrophage by the ribotoxic trichothecene deoxynivalenol. Toxicological Science 87: 113-122.
CrossrefGoogle Scholar
Zhou, H.R., Jia, Q. and Pestka, J.J., 2005b. Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck. Toxicological Science 85: 916-926.
CrossrefGoogle Scholar
Zhou, H.R., Lau, A.S. and Pestka, J.J., 2003c. Role of double-stranded RNA-activated protein kinase R (PKR) in deoxynivalenol-induced ribotoxic stress response. Toxicological Science 74: 335-344.
CrossrefGoogle Scholar
Zhou, H.R., Yan, D. and Pestka, J.J., 1997. Differential cytokine mRNA expression in mice after oral exposure to the trichothecene vomitoxin (deoxynivalenol): dose response and time course. Toxicology and Applied Pharmacology 144: 294-305.
CrossrefGoogle Scholar
Zhou, H.R., Yan, D. and Pestka, J.J., 1998. Induction of cytokine gene expression in mice after repeated and subchronic oral exposure to vomitoxin (deoxynivalenol): differential toxininduced hyporesponsiveness and recovery. Toxicology and Applied Pharmacology 151: 347-358.
CrossrefGoogle Scholar

New titles

< >

Issue Details

World Mycotoxin Journal


World Mycotoxin Journal

Publication Cover
Print ISSN: 1875-0710
Online ISSN: 1875-0796
Get Permission

2023 Journal Impact Factor 2.0
source: Journal Impact Factor 2023™ from Clarivate™

2022 CiteScore

Purchase Options

Institutional Offers

For institutional orders, please contact [email protected].