Abrunhosa, L., Morales, H., Soares, C., Calado, T., Vila-Chã, A.S., Pereira, M. and Venâncio, A., 2016. A review of mycotoxins in food and feed products in Portugal and estimation of probable daily intakes. Critical Reviews in Food Science and Nutrition 56: 249-265.
CrossrefGoogle Scholar
Adebayo-tayo, B.C. and Onilude, A.A., 2008. Screening of lactic acid bacteria strains isolated from some Nigerian fermented foods for EPS production. World Applied Sciences Journal 4: 741-747.
Google Scholar
Afolabi, O.R. and Akintokun, A.K., 2008. Inhibition of some intestinal pathogens by Lactobacillus species isolated from ogi. Asset Series B 7: 10-16.
Google Scholar
Agati, V., Guyot, J.P., Morton-Guyot, J., Talamond, P. and Hounhouigan, D.J., 1998. Isolation and characterization of new amylolytic strains of Lactobacillus fermentum from fermented maize doughs (mawe and ogi) from Benin. Journal of Applied Microbiology 85: 512-520.
CrossrefGoogle Scholar
Agence Française de Sécurité Sanitaire des Aliments (AFSSA), 2006. Risk assessment for mycotoxins in human and animal food chains. Summary Report, AFSSA, Paris, France. Available at: http://tinyurl.com/y7rywclb. Google Scholar
Ahlberg, S.H., Joutsjoki, V. and Korhonen, H.J., 2015. Potential of lactic acid bacteria in aflatoxin risk mitigation. International Journal of Food Microbiology 207: 87-102.
CrossrefGoogle Scholar
Beier, R.C., Elissalde, M.H. and Stanker L.H., 1995. Calculated three dimensional structures of the fumonisin B1-4 mycotoxins. Bulletin of Environmental Contamination and Toxicology 54: 479-487.
Google Scholar
Beier, R.C. and Stanker, L.H., 1997. Molecular models for the stereochemical structures of FB1 and FB2. Archives of Environmental Contamination and Toxicology 33: 1-8.
CrossrefGoogle Scholar
Chapot-Chartier, M.P. and Kulakauskas, S., 2014. Cell wall structure and function in lactic acidbacteria. Microbial Cell Factories 13: S9.
CrossrefGoogle Scholar
Chilaka, C.A., De Boevre, M., Atanda, O.O. and De Saeger, S., 2016. Occurrence of Fusarium mycotoxins in cereal crops and processed products (ogi) from Nigeria. Toxins 8: 342-360.
CrossrefGoogle Scholar
Dalié, D.K.D., Deschamps, A.M. and Richard-Forget, F., 2010. Lactic acid bacteria – potential for control of mould growth and mycotoxins: a review. Food Control 21: 370-380.
CrossrefGoogle Scholar
Dawlal, P., Barros, E. and Marais, G.J., 2010. Resistance of maize cultivars against the infestation of mycotoxigenic fungi. MSc-thesis, University of Pretoria, Pretoria, South Africa. Google Scholar
De Man, J.C., Rogosa, M. and Sharpe, M.E., 1960. A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology 23: 130-135.
CrossrefGoogle Scholar
Delcour, J., Ferrain, T., Deghorain, M., Palumbo, E. and Hob, P., 1999. The biosynthesis and functionality of the cell wall of lactic acid bacteria. Antonie van Leeuwenhoek 76: 159-184.
CrossrefGoogle Scholar
El-Nezami, H., Kankaanpaa, P., Salminen, S. and Ahokas, J., 1998. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food and Chemical Toxicology 36: 321-326.
CrossrefGoogle Scholar
El-Nezami, H., Polychronaki, N., Salminen, S. and Mykkänen, H., 2002. Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with zearalenone and its derivative α-zearalenol. Applied and Environmental Microbiology 68: 3545-3549.
CrossrefGoogle Scholar
European Commission (EC), 2006. Commission Regulation No. 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Official Journal of the European Union L 70: 12-34. Google Scholar
Fayemi, O.E., 2016. Inhibition of non-0157 Shiga toxin producing Escherichia coli in African fermented foods by probiotic bacteria. PhD-thesis, University of Pretoria, Pretoria, South Africa. Google Scholar
Ferrigo, D., Raiola, A. and Causin, R., 2016. Fusarium toxins in cereals: occurrence, legislation, factors promoting the appearance and their management. Molecules 21: 627.
CrossrefGoogle Scholar
Food and Agriculture Organisation (FAO), 1999. Fermented cereals. A global perspective. Cereal fermentations in African countries. FAO Agricultural Services Bulletin 138. FAO, Rome, Italy. Google Scholar
Food and Agriculture Organisation (FAO), 2014. Statistical yearbook – Asia and the Pacific food and agriculture. FAO Statistical Services, Bangkok, Thailand. Google Scholar
Holzapfel, W.H. and Taljaard, J.L., 2004. Industrialization of mageu fermentation in South Africa. In: Steinkraus, K.H. (ed.) Industrialization of indigenous fermented foods. CRC Press, Boca Raton, FL, USA, pp. 363-405.
Google Scholar
Holzapfel, W.H., Franz, C.M.A.D., Ludwig, W., Back, W. and Dicks, L.M.T., 2006. The genera: Pediococcus and Tetragenococcus. In: Falkow, S., Rosenberg, E., Schleifer, K.H. and Stackebrandt, E. (eds.) The prokaryotes. Vol. 4. Bacteria: Firmicutes, Cyanobacteria. Springer, New York, NY, USA, pp. 229-266.
Google Scholar
Ijabadeniyi, A.O., 2007. Microorganisms associated with ogi traditionally produced from three varieties of maize. Research Journal of Microbiology 2: 247-253.
CrossrefGoogle Scholar
Jacobs, A., 1991. Method of freezing lactic acid bacteria. Chapter 4. In: Boshoff, I.E., Pinches, S.E., Ligthelm, M.E., Jacobs, A. and de Jesus A.E. (eds.) Biological control project: manual of methods. Division of Food Science and Technology, Pretoria, South Africa, pp. 50.
Google Scholar
Jankovic, T., Frece, J., Abram, M. and Gobin, I., 2012. Aggregation ability of potential probiotic Lactobacillus plantarum strains. International Journal of Sanitary Engineering Research 6: 19-24.
Google Scholar
Jard, G., Liboz, T., Mathieu, F., Guyonvarc’h, A. and Lebrihi, A., 2011. Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Additives and Contaminants Part A 28: 1590-1609.
CrossrefGoogle Scholar
Kabak, B., 2009. The fate of mycotoxins during thermal food processing. Journal of the Science of Food and Agriculture 89: 549-554.
CrossrefGoogle Scholar
Karlovsky, P., Suman, M., Berthiller, F., De Meester, J., Eisenbrand, G., Perrin, I., Oswald, I.P., Speijers, G., Chiodini, A., Recker, T. and Dussort, P., 2016. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Research 32: 179-205.
CrossrefGoogle Scholar
Katangole, J.N., 2008. The microbial succession in indigenous fermented maize products. MSc-thesis, University of Free State, Bloemfontein, South Africa. Google Scholar
Luxbacher, T., 2014. The zeta guide. Principles of the streaming potential technique. 1sted. Anton Paar GmbH., Graz, Austria.
Google Scholar
Macauley, H. and Ramadjita, T.R., 2015. Cereal crops: rice, maize, millet, sorghum, wheat. An action plan for African agricultural transformation. Feeding Africa. United Nations: Economic Commission for Africa, Addis Ababa, Ethiopia.
Google Scholar
Marasas, W.F.O., Gelderblom, W.C.A., Shephard, G.S. and Vismer, H.F., 2008. Mycotoxins: a global problem. In: Leslie, J.F., Bandyapadhyay, R. and Visconti, A. (eds.) Mycotoxins: detection methods, management, public health and agricultural trade. CAB International, Wallingford, UK, pp. 29-39.
Google Scholar
Mngqawa, P., Shephard, G.S., Green, I.R., Ngobeni, S.H., De Rijk, T.C. and Katerere, D.R., 2016. Mycotoxin contamination of home-grown maize in rural northern South Africa (Limpopo and Mpumalanga Provinces). Food Additives and Contaminants Part B 9: 38-45.
CrossrefGoogle Scholar
Mugcoba, T.P., 2001. Fermentation of a finger millet-dairy composite gruel. PhD-thesis, University of Pretoria, Pretoria, South Africa. Google Scholar
Nago, M.C., Hounhouigan, J.D., Akissoe, N., Zanou, E. and Mestres, C., 1998. Characterization of the Beninese traditional ogi, a fermented maize slurry: physicochemical and microbiological aspects. International Journal of Food Science and Technology 33: 307-315.
CrossrefGoogle Scholar
Niderkorn, V., Boudra, H. and Morgavi, D.P., 2006a. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. Journal of Applied Microbiology 101: 849-856.
CrossrefGoogle Scholar
Niderkorn, V., Morgavi, D.P., Aboab, B., Lemaire, M. and Boudra, H., 2009. Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. Journal of Applied Microbiology 106: 977-985.
CrossrefGoogle Scholar
Niderkorn, V., Pujos, E., Tissandier, A. and Boudra, H., 2006b. Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro model simulating corn silage. Food Additives and Contaminants 24: 406-415.
CrossrefGoogle Scholar
Nwosu, V.C. and Oyeka, C.A., 1998. Microbiological succession occurring during fermentation of ogi-an African breakfast cereal. Journal of the Elisha Mitchell Scientific Society 114: 190-198.
Google Scholar
Okeke, C.A., Ezekiel, C.N., Nwangburuka, C.C., Sulyok, M., Ezeamagu, C.O., Adeleke, R.A., Dike, S.K. and Krska, R., 2015. Bacterial diversity and mycotoxin reduction during maize fermentation (steeping) for ogi production. Frontiers in Microbiology 6: 1402-1414.
Google Scholar
Omemu, A.M., 2011. Fermentation dynamics during production of ogi, a Nigerian fermented cereal porridge. Report and Opinion 3(4): 8-17.
Google Scholar
Pederson, C.S., 1935. A study of the species of Lactobacillus plantarum (Orla-Jensen) Bergey et al. Journal of Bacteriology 31: 217-224.
CrossrefGoogle Scholar
Pereira, V.L., Fernandes, J.O. and Cunha, S.C., 2014. Mycotoxins in cereals and related foodstuffs: a review on occurrence and recent methods of analysis. Trends in Food Science and Technology 36: 96-136.
CrossrefGoogle Scholar
Reddy, K.R.N., Farhana, N.I., Salleh, B. and Oliveira, C.A.F., 2010. Microbiological control of mycotoxins: present status and future concerns. In: Mendez-Vilas, A. (ed.) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Research Centre, Badajoz, Spain, pp. 1078-1086.
Google Scholar
Schar-Zammaretti, P. and Ubbink, J., 2003. The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophysical Journal 85: 4076-4092.
CrossrefGoogle Scholar
Semjonovas, P. and Zikmanis, P., 2010. Pediococcus pentosaceus lactose-positive strain and a complex of fructan-containing exopolysaccharides synthesized by the strain. European Patent Application: EP 2011859 B1. Available at: http://tinyurl.com/ybjmr2ka. Google Scholar
Topcu, A., Bulat, T., Wishah, R. and Boyaci, I.H., 2010. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. International Journal of Food Microbiology 139: 202-205.
CrossrefGoogle Scholar
Udomkun, P., Wiredu, A.N., Nagle, M., Bandyopadhyay, R., Müller, J. and Vanlauwe, B., 2017. Mycotoxins in sub-Saharan Africa: present situation, socio-economic impact, awareness, and outlook. Food Control 72: 110-122.
CrossrefGoogle Scholar
Valiuškaitė, A., Survilienė, E., Lugauskas, A. and Levinskaitė, L., 2006. Ecological aspects of distribution of potential toxin-producing micromycetes on stored apple fruit. Ekologija 3: 60-93.
Google Scholar
Vismer, H.F., Shephard, G.S., Rheeder, J.P., Van der Westhuizen, L. and Bandyopadhyay, R., 2015. Relative severity of fumonisin contamination of cereal crops in West Africa. Food Additives and Contaminants Part A 32: 1952-1958.
CrossrefGoogle Scholar
Ware, L.Y., Durand, N., Nikiema, P.A., Alter, P., Fontana, A., Montet, D. and Barro, N., 2017. Occurrence of mycotoxins in commercial infant formulas locally produced in Ouagadougou (Burkina Faso). Food Control 73: 518-523.
CrossrefGoogle Scholar
Wild, C.P., Miller, D. and Groopman, J.D. (eds.) 2015. Mycotoxin control in low- and middle-income countries. IARC Working group report 9. International Agency for Research on Cancer (IARC), Lyon, France. Available at: http://tinyurl.com/yazdoe4s. Google Scholar
Zain, M.E., 2011. Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society 15: 129-144.
CrossrefGoogle Scholar
Zhao, H., Wang, X., Zhang, J., Zhang, J. and Zhang, B., 2016. The mechanism of Lactobacillus strains for their ability to remove fumonisins B1 and B2. Food and Chemical Toxicology 97: 40-46.
CrossrefGoogle Scholar

New titles

< >

Issue Details

World Mycotoxin Journal


World Mycotoxin Journal

Publication Cover
Print ISSN: 1875-0710
Online ISSN: 1875-0796
Get Permission

2023 Journal Impact Factor 2.0
source: Journal Impact Factor 2023™ from Clarivate™

2022 CiteScore

Purchase Options

Institutional Offers

For institutional orders, please contact [email protected].