Cover Image

Microbiota in health and disease: from pregnancy to childhood



Published: 2017  Pages: 344

eISBN: 978-90-8686-839-1 | ISBN: 978-90-8686-294-8

Book Type: Edited Collection
Aagaard, K., Ma, J., Antony, K.M., Ganu, R., Petrosino, J. and Versalovic, J., 2014. The placenta harbors a unique microbiome. Science Translational Medicine 6: 237-265.
Google Scholar
Adlerberth, I. and Wold, A.E., 2009. Establishment of the gut microbiota in Western infants. Acta Paediatrica 98: 229-238.
CrossrefGoogle Scholar
Andersen, A.D., Molbak, L., Michaelsen, K.F. and Lauritzen, L., 2011. Molecular fingerprints of the human fecal microbiota from 9 to 18 months old and the effect of fish oil supplementation. Journal of Pediatric Gastroenterology and Nutrition 53: 303-309.
CrossrefGoogle Scholar
Andreas, N.J., Kampmann, B. and Mehring Le-Doare, K., 2015. Human breast milk: a review on its composition and bioactivity. Early Human Development 91: 629-635.
CrossrefGoogle Scholar
Asakuma, S., Hatakeyama, E., Urashima, T., Yoshida, E., Katayama, T., Yamamoto, K., Kumagai, H., Ashida, H., Hirose, J. and Kitaoka, M., 2011. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. Journal of Biological Chemistry 286: 34583-34592.
CrossrefGoogle Scholar
Avershina, E., Storro, O., Oien, T., Johnsen, R., Pope, P. and Rudi, K., 2014. Major faecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children. FEMS Microbiology Ecology 87: 280-290.
CrossrefGoogle Scholar
Azad, M.B., Konya, T., Maughan, H., Guttman, D.S., Field, C.J., Chari, R.S., Sears, M.R., Becker, A.B., Scott, J.A., Kozyrskyj, A.L. and CHILD study Investigators, 2013. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. Canadian Medical Association Journal 185: 385-394.
CrossrefGoogle Scholar
Backhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie, H., Zhong, H., Khan, M.T., Zhang, J., Li, J., Xiao, L., Al-Aama, J., Zhang, D., Lee, Y.S., Kotowska, D., Colding, C., Tremaroli, V., Yin, Y., Bergman, S., Xu, X., Madsen, L., Kristiansen, K., Dahlgren, J. and Wang, J., 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17: 690-703.
CrossrefGoogle Scholar
Benno, Y., Sawada, K. and Mitsuoka, T., 1984. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiology and Immunology 28: 975-986.
CrossrefGoogle Scholar
Bezirtzoglou, E., Tsiotsias, A. and Welling, G.W., 2011. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 17: 478-482.
CrossrefGoogle Scholar
Bode, L., 2012. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22: 1147-1162.
CrossrefGoogle Scholar
Cabrera-Rubio, R., Collado, M.C., Laitinen, K., Salminen, S., Isolauri, E. and Mira, A., 2012. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. American Journal of Clinical Nutrition 96: 544-551.
CrossrefGoogle Scholar
Chichlowski, M., De Lartigue, G., German, J.B., Raybould, H.E. and Mills, D.A., 2012. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. Journal of Pediatric Gastroenterology and Nutrition 55: 321-327.
CrossrefGoogle Scholar
Claesson, M.J., Cusack, S., O’Sullivan, O., Greene-Diniz, R., De Weerd, H., Flannery, E., Marchesi, J.R., Falush, D., Dinan, T., Fitzgerald, G., Stanton, C., Van Sinderen, D., O’Connor, M., Harnedy, N., O’Connor, K., Henry, C., O’Mahony, D., Fitzgerald, A.P., Shanahan, F., Twomey, C., Hill, C., Ross, R.P. and O’Toole, P.W., 2011. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the USA 108, Suppl. 1: 4586-4591.
CrossrefGoogle Scholar
Davidson, D.C., Poll, R.A. and Roberts, C., 1979. Bacteriological monitoring of unheated human milk. Archives of Disease in Childhood 54: 760-764.
CrossrefGoogle Scholar
De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B., Massart, S., Collini, S., Pieraccini, G. and Lionetti, P., 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences USA 107: 14691-14696.
CrossrefGoogle Scholar
DiGiulio, D.B., 2012. Diversity of microbes in amniotic fluid. Seminars in Fetal and Neonatal Medicine 17: 2-11.
CrossrefGoogle Scholar
Dominguez-Bello, M.G., Costello, E.K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N. and Knight, R., 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the USA 107: 11971-11975.
CrossrefGoogle Scholar
Dore, J. and Blottiere, H., 2015. The influence of diet on the gut microbiota and its consequences for health. Current Opinions in Biotechnology 32: 195-199.
CrossrefGoogle Scholar
Dorr, H. and Sittel, I., 1953. Bacteriological examination of human milk and its relation to mastitis. Zentralbl Gynakol 75: 1833-1835.
Google Scholar
Fallani, M., Amarri, S., Uusijarvi, A., Adam, R., Khanna, S., Aguilera, M., Gil, A., Vieites, J.M., Norin, E., Young, D., Scott, J.A., Dore, J., Edwards, C.A. and team, I., 2011. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology 157: 1385-1392.
CrossrefGoogle Scholar
Fallani, M., Young, D., Scott, J., Norin, E., Amarri, S., Adam, R., Aguilera, M., Khanna, S., Gil, A., Edwards, C.A., Dore, J., 2010. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. Journal of Pediatrics, Gastroenterology and Nutrition 51: 77-84.
CrossrefGoogle Scholar
Fernandez, L., Langa, S., Martin, V., Maldonado, A., Jimenez, E., Martin, R. and Rodriguez, J.M., 2013. The human milk microbiota: origin and potential roles in health and disease. Pharmacology Research 69: 1-10.
CrossrefGoogle Scholar
Funkhouser, L.J. and Bordenstein, S.R., 2013. Mom knows best: the universality of maternal microbial transmission. PLoS Biology 11: e1001631.
CrossrefGoogle Scholar
Garrido, D., Kim, J.H., German, J.B., Raybould, H.E. and Mills, D.A., 2011. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS ONE 6: e17315.
CrossrefGoogle Scholar
Goldsmith, F., O’Sullivan, A., Smilowitz, J.T. and Freeman, S.L., 2015. Lactation and intestinal microbiota: how early diet shapes the infant gut. Journal of Mammary Gland Biology and Neoplasia 20: 149-158.
CrossrefGoogle Scholar
Haarman, M. and Knol, J., 2005. Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Applied and Environmental Microbiology 71: 2318-2324.
CrossrefGoogle Scholar
Harmsen, H.J., Wildeboer-Veloo, A.C., Raangs, G.C., Wagendorp, A.A., Klijn, N., Bindels, J.G. and Welling, G.W., 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. Journal of Pediatrics, Gastroenterology and Nutrition 30: 61-67.
CrossrefGoogle Scholar
Heikkila, M.P. and Saris, P.E., 2003. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. Journal of Applied Microbiology 95: 471-478.
CrossrefGoogle Scholar
Isaacs, C.E., 2001. The antimicrobial function of milk lipids. Advances in Food and Nutrition Research 10: 271-285.
Google Scholar
Isaacs, C.E., Litov, R.E. and Thormar, H., 1995. Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk. Journal of Nutritional Biochemistry 6: 362-366.
CrossrefGoogle Scholar
Jimenez, E., Delgado, S., Maldonado, A., Arroyo, R., Albujar, M., Garcia, N., Jariod, M., Fernandez, L., Gomez, A. and Rodriguez, J.M., 2008a. Staphylococcus epidermidis: a differential trait of the fecal microbiota of breastfed infants. BMC Microbiology 8: 143.
CrossrefGoogle Scholar
Jimenez, E., Marin, M.L., Martin, R., Odriozola, J.M., Olivares, M., Xaus, J., Fernandez, L. and Rodriguez, J.M., 2008b. Is meconium from healthy newborns actually sterile? Research in Microbiology 159: 187-193.
CrossrefGoogle Scholar
Jost, T., Lacroix, C., Braegger, C. and Chassard, C., 2013. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. British Journal of Nutrition 110: 1253-1262.
CrossrefGoogle Scholar
Jost, T., Lacroix, C., Braegger, C. and Chassard, C., 2015. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutrition Reviews 73: 426-437.
CrossrefGoogle Scholar
Jost, T., Lacroix, C., Braegger, C.P., Rochat, F. and Chassard, C., 2014. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environmental Microbiology 16: 2891-2904.
CrossrefGoogle Scholar
Kim, J.H., An, H.J., Garrido, D., German, J.B., Lebrilla, C.B. and Mills, D.A., 2013. Proteomic analysis of Bifidobacterium longum subsp. infantis reveals the metabolic insight on consumption of prebiotics and host glycans. PLoS ONE 8: e57535.
CrossrefGoogle Scholar
Kunz, C., Rudloff, S., Baier, W., Klein, N. and Strobel, S., 2000. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annual Review of Nutrition 20: 699-722.
CrossrefGoogle Scholar
Lewis, Z.T., Totten, S.M., Smilowitz, J.T., Popovic, M., Parker, E., Lemay, D.G., Van Tassell, M.L., Miller, M.J., Jin, Y.S., German, J.B., Lebrilla, C.B. and Mills, D.A., 2015. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3: 13.
CrossrefGoogle Scholar
LoCascio, R.G., Ninonuevo, M.R., Freeman, S.L., Sela, D.A., Grimm, R., Lebrilla, C.B., Mills, D.A. and German, J.B., 2007. Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. Journal of Agricultural Food Chemistry 55: 8914-8919.
CrossrefGoogle Scholar
Maga, E.A., Desai, P.T., Weimer, B.C., Dao, N., Kultz, D. and Murray, J.D., 2012. Consumption of lysozyme-rich milk can alter microbial fecal populations. Applied and Environmental Microbiology 78: 6153-6160.
CrossrefGoogle Scholar
Maga, E.A., Weimer, B.C. and Murray, J.D., 2013. Dissecting the role of milk components on gut microbiota composition. Gut Microbes 4: 136-139.
CrossrefGoogle Scholar
Martin-Sosa, S., Martin, M.J., Garcia-Pardo, L.A. and Hueso, P., 2003. Sialyloligosaccharides in human and bovine milk and in infant formulas: variations with the progression of lactation. Journal of Dairy Science 86: 52-59.
CrossrefGoogle Scholar
Mitsuoka, T. and Kaneuchi, C., 1977. Ecology of the bifidobacteria. American Journal of Clinical Nutrition 30: 1799-1810.
CrossrefGoogle Scholar
Morrow, A.L., Ruiz-Palacios, G.M., Jiang, X. and Newburg, D.S., 2005. Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. Journal of Nutrition 135: 1304-1307.
CrossrefGoogle Scholar
Newburg, D.S. and Grave, G., 2014. Recent advances in human milk glycobiology. Pediatric Research 75: 675-679.
CrossrefGoogle Scholar
Newburg, D.S. and Morelli, L., 2015. Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota. Pediatric Research 77: 115-120.
CrossrefGoogle Scholar
O’Sullivan, A., Farver, M. and Smilowitz, J.T., 2015. The influence of early infant-feeding practices on the intestinal microbiome and body composition in infants. Nutrition and Metabolic Insights 8: 1-9.
Google Scholar
Pabst, O., Cerovic, V. and Hornef, M., 2016. Secretory IgA in the coordination of establishment and maintenance of the microbiota. Trends in Immunology 37(5): 287-296.
CrossrefGoogle Scholar
Palmer, C., Bik, E.M., DiGiulio, D.B., Relman, D.A. and Brown, P.O., 2007. Development of the human infant intestinal microbiota. PLoS Biology 5: e177.
CrossrefGoogle Scholar
Penders, J., Gerhold, K., Stobberingh, E.E., Thijs, C., Zimmermann, K., Lau, S. and Hamelmann, E., 2013. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. Journal of Allergy and Clinical Immunology 132: 601-607.
CrossrefGoogle Scholar
Penders, J., Stobberingh, E.E., Thijs, C., Adams, H., Vink, C., Van Ree, R. and Van den Brandt, P.A., 2006a. Molecular fingerprinting of the intestinal microbiota of infants in whom atopic eczema was or was not developing. Clinical and Experimental Allergy 36: 1602-1608.
CrossrefGoogle Scholar
Penders, J., Thijs, C., Vink, C., Stelma, F.F., Snijders, B., Kummeling, I., Van den Brandt, P.A. and Stobberingh, E.E., 2006b. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118: 511-521.
CrossrefGoogle Scholar
Penders, J., Vink, C., Driessen, C., London, N., Thijs, C. and Stobberingh, E.E., 2005. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiology Letters 243: 141-147.
CrossrefGoogle Scholar
Pourcyrous, M., Nolan, V.G., Goodwin, A., Davis, S.L. and Buddington, R.K., 2014. Fecal short-chain fatty acids of very-low-birth-weight preterm infants fed expressed breast milk or formula. Journal of Pediatrics, Gastroenterology and Nutrition 59: 725-731.
CrossrefGoogle Scholar
Praveen, P., Jordan, F., Priami, C. and Morine, M.J., 2015. The role of breast-feeding in infant immune system: a systems perspective on the intestinal microbiome. Microbiome 3: 41.
CrossrefGoogle Scholar
Roger, L.C. and McCartney, A.L., 2010. Longitudinal investigation of the faecal microbiota of healthy full-term infants using fluorescence in situ hybridization and denaturing gradient gel electrophoresis. Microbiology 156: 3317-3328.
CrossrefGoogle Scholar
Rogier, E.W., Frantz, A.L., Bruno, M.E., Wedlund, L., Cohen, D.A., Stromberg, A.J. and Kaetzel, C.S., 2014. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proceedings of the National Academy of Sciences of the USA 111: 3074-3079.
CrossrefGoogle Scholar
Salonen, A. and De Vos, W.M., 2014. Impact of diet on human intestinal microbiota and health. Annual Review of Food Science Technology 5: 239-262.
CrossrefGoogle Scholar
Siigur, U., Ormisson, A. and Tamm, A., 1993. Faecal short-chain fatty acids in breast-fed and bottle-fed infants. Acta Paediatrica 82: 536-538.
CrossrefGoogle Scholar
Solis, G., De los Reyes-Gavilan, C.G., Fernandez, N., Margolles, A. and Gueimonde, M., 2010. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 16: 307-310.
CrossrefGoogle Scholar
Voreades, N., Kozil, A. and Weir, T.L., 2014. Diet and the development of the human intestinal microbiome. Frontiers in Microbiology 5: 494.
Google Scholar
Wang, M., Li, M., Wu, S., Lebrilla, C.B., Chapkin, R.S., Ivanov, I. and Donovan, S.M., 2015. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. Journal of Pediatrics, Gastroenterology and Nutrition 60: 825-833.
CrossrefGoogle Scholar
World Health Organisation (WHO), 2014. Global nutrition targets 2025: breastfeeding policy brief. WHO, Geneva, Switzerland. Google Scholar
Xe, X., Le Mougen, F., Duncan, S.H., Louis, P. and Flint, H.J., 2013. Some are more equal than others: the role of ‘keystone’ species in the degradation of recalcitrant substrates. Gut Microbes 4: 236-240.
CrossrefGoogle Scholar
Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R.N., Anokhin, A.P., Heath, A.C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J.G., Lozupone, C.A., Lauber, C., Clemente, J.C., Knights, D., Knight, R. and Gordon, J.I., 2012. Human gut microbiome viewed across age and geography. Nature 486: 222-227.
CrossrefGoogle Scholar
Yoshida, E., Sakurama, H., Kiyohara, M., Nakajima, M., Kitaoka, M., Ashida, H., Hirose, J., Katayama, T., Yamamoto, K. and Kumagai, H., 2012. Bifidobacterium longum subsp. infantis uses two different betagalactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology 22: 361-368.
CrossrefGoogle Scholar
Yoshioka, H., Iseki, K. and Fujita, K., 1983. Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics 72: 317-321.
Google Scholar
Yu, Z.T., Chen, C. and Newburg, D.S., 2013. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23: 1281-1292.
CrossrefGoogle Scholar

Related titles:

New titles

Institutional Offers

For institutional orders, please contact [email protected].

Purchase Options