Cover Image

Chemical hazards in foods of animal origin


ECVPH Food safety assurance, Volume 7

Published: 2019  Pages: 670

eISBN: 978-90-8686-877-3 | ISBN: 978-90-8686-326-6

Book Type: Edited Collection
Ahasan, H.A., Mamun, A.A., Karim, S.R., Bakar, M.A., Gazi, E.A. and Bala, C.S., 2004. Paralytic complications of puffer fish (tetrodotoxin) poisoning. Singapore Med. J. 45(2), 73-74.
Google Scholar
Akhavan, A., Lebin, J.A. and Hurley, W., 2018. Fugu: a culinary brush with death. BMJ, Available at: https://tinyurl.com/y9g5kvfb. Google Scholar
Alexander, J., Benford, D., Cockburn, A., Cradevi, J.-P., Dogliotti, E., Domenico, A.D., Fernandez-Cruz, M.L., Fink-Gremmels, J., Furst, P., Galli, C., Grandjean, P., Heinemeyer, G., Johansson, N., Mutti, A., Schlatter, J. and Van Leeuwen, R., 2010c. Scientific opinion on marine biotoxins in shellfish – emerging toxins: ciguatoxin group. Eur. Food Saf. Auth. J 8(6): 1-38.
Google Scholar
Alexander, J., Benford, D., Cockburn, A., Cradevi, J.-P., Dogliotti, E., Domenico, A.D., Fernandez-Cruz, M.L., Fink-Gremmels, J., Furst, P., Galli, C., Grandjean, P., Heinemeyer, G., Johansson, N., Mutti, A., Schlatter, J. and Van Leeuwen, R., 2010b. Scientific opinion on marine biotoxins in shellfish – cyclic imines (spirolides, gymnodimines, pinnatoxins and pteriatoxins). Eur. Food Saf. Auth. J 8(6): 1-39.
Google Scholar
Alexander, J., Benford, D., Cockburn, A., Cradevi, J.-P., Dogliotti, E., Domenico, A.D., Fernandez-Cruz, M.L., Fink-Gremmels, J., Furst, P., Galli, C., Grandjean, P., Gzyl, J., Heinemeyer, G., Johansson, N., Mutti, A., Schlatter, J. and Van Leeuwen, R., 2010a. Scientific opinion on marine biotoxins in shellfish – emerging toxins: brevetoxin group. Eur. Food Saf. Auth. J 8(7): 1-29.
Google Scholar
Alexander, J., Benford, D., Cockburn, A., Cradevi, J.-P., Dogliotti, E., Domenico, A.D., Fernandez-Cruz, M.L., Fink-Gremmels, J., Furst, P., Galli, C., Grandjean, P., J., G., Heinemeyer, G., Johansson, N., Mutti, A., Schlatter, J. and Van Leeuwen, R., 2008b. Marine biotoxins in shellfish – azaspiracid group. Eur. Food Saf. Auth. J 6(10): 1-52.
Google Scholar
Alexander, J., Audunsson, G.A., Benford, D., Cockburn, A., Cradevi, J.-P., Dogliotti, E., Domenico, A.D., Fernandez-Cruz, M.L., Fink-Gremmels, J., Furst, P., Galli, C., Grandjean, P., Gzyl, J., Heinemeyer, G., Johansson, N., Mutti, A., Schlatter, J., Van Leeuwen, R., Van Peteghem, C. and Verger, P., 2008a. Marine biotoxins in shellfish - okadaic acid and analogues. Eur. Food Saf. Auth. J 6(1): 1-62.
Google Scholar
Alexander, J., Benford, D., Boobis, A., Ceccatelli, S., Cradevi, J.-P., Domenico, A.D., Doerge, D., Dogliotti, E., Edler, L., Farmer, P., Filipic, M., Fink-Gremmels, J., Furst, P., Guerin, T., Knutsen, H.K., Machala, M., Mutti, A., Schlatter, J. and Van Leeuwen, R., 2009a. Scientific opinion on marine biotoxins in shellfish – palytoxin group. Eur. Food Saf. Auth. J. 7(12): 1-38.
Google Scholar
Alexander, J., Benford, D., Boobis, A., Ceccatelli, S., Cradevi, J.-P., Domenico, A.D., Doerge, D., E., D., Edler, L., Farmer, P., Filipic, M., Fink-Gremmels, J., Furst, P., Guerin, T., Knutsen, H.K., Livesey, C., Machala, M., Mutti, A., Schlatter, J., Van Leeuwen, R., Van Peteghem, C. and Verger, P., 2009b. Marine biotoxins in shellfish – domoic acid. Eur. Food Saf. Auth. J. 7(7): 1-61.
Google Scholar
Alexander, J., Benford, D., Cockburn, A., Cradevi, J.-P., Dogliotti, E., Domenico, A.D., Fernandez-Cruz, M.L., Fink-Gremmels, J., Furst, P., Galli, C., Grandjean, P., Gzyl, J., Heinemeyer, G., Johansson, N., Mutti, A., Schlatter, J. and Van Leeuwen, R., 2009c. Marine biotoxins in shellfish – saxitoxin group. Eur. Food Saf. Auth. J 7(4): 1-76.
Google Scholar
Anderson, D.M., 1994. Red tides. Sci Am. 271(2), 62-68.
CrossrefGoogle Scholar
Anonymous, 2008. Standard for live and raw bivalve molluscs CODEX STAN., 292-2008. Available at: https://tinyurl.com/y8azvq86. Google Scholar
Anonymous, 2011a. Contaminants and natural toxicants. Australia and New Zealand Food Standards Code 1.4.1. Available at: https://tinyurl.com/y82ufju3. Google Scholar
Anonymous, 2011b. Fish and fisheries products hazards and control guidance. Food and Drug Administration. Available at: https://tinyurl.com/yanwwxjn. Google Scholar
Arena, P., Levin, B., Fleming, L.E., Friedman, M.A. and Blythe, D., 2004. A pilot study of the cognitive and psychological correlates of chronic ciguatera poisoning. Harmful Algae 3(1), 51-60.
CrossrefGoogle Scholar
Aune, T., Dahl, E. and Tangen, K., 1995. Algal monitoring, a useful tool in early warning of shellfish toxicity. Harmful Marine Algal Blooms, 765-770.
Google Scholar
Aune, T., Ramstad, H., Heidenreich, B., Landsverk, T., Waaler, T., Egaas, E. and Julshamn, K., 1998. Zinc accumulation in oysters giving mouse deaths in paralytic shellfish poisoning bioassay. J. Shellfish Res. 17(4), 1243-1246.
Google Scholar
Baden, D.G., Fleming, L.E. and Bean, J.A., 1995. Marine toxins. Handbook of clinical neurology. Elsevier, New York, NY, USA, pp. 141-175.
Google Scholar
Baden, D.G., Mende, T.J. and Trainer, V.L., 1988. Derivatized brevetoxins and their use as quantitative tools in detection. JSM Mycotoxins, Suppl. 1, 1-2.
Google Scholar
Banner, A.H., Sasaki, S., Helfrich, P., Scheuer, P.J. and Alender, C.B., 1961. Bioassay of ciguatera toxin. Nature 189(476), 229-230.
CrossrefGoogle Scholar
Begier, E.M., Backer, L.C., Weisman, R.S., Hammond, R.M., Fleming, L.E. and Blythe, D., 2006. Outbreak bias in illness reporting and case confirmation in ciguatera fish poisoning surveillance in south Florida. Publ. Health Rep. 121(6), 658-665.
CrossrefGoogle Scholar
Beltran, A.S., PalafoxUribe, M., GrajalesMontiel, J., CruzVillacorta, A. and Ochoa, J.L., 1997. Sea bird mortality at Cabo San Lucas, Mexico: evidence that toxic diatom blooms are spreading. Toxicon 35(3), 447-453.
CrossrefGoogle Scholar
Bentur, Y., Ashkar, J., Lurie, Y., Levy, Y., Azzam, Z.S., Litmanovich, M., Golik, M., Gurevych, B., Golani, D. and Eisenman, A., 2008. Lessepsian migration and tetrodotoxin poisoning due to Lagocephalus sceleratus in the eastern Mediterranean. Toxicon. 52(8), 964-968.
CrossrefGoogle Scholar
Berman, F.W., Lepage, K.T. and Murray, T.F., 2002. Domoic acid neurotoxicity in cultured cerebellar granule neurons is controlled preferentially by the NMDA receptor Ca2+ influx pathway. Brain Res. 924(1), 20-29.
CrossrefGoogle Scholar
Berman, F.W. and Murray, T.F., 2000. Brevetoxin-induced autocrine excitotoxicity is associated with manifold routes of Ca2+ influx. J. Neurochem. 74(4), 1443-1451.
CrossrefGoogle Scholar
Bianchi, C., Fato, R., Angelin, A., Trombetti, F., Ventrella, V., Borgatti, A.R., Fattorusso, E., Ciminiello, P., Bernardi, P., Lenaz, G. and Castelli, G.P., 2004. Yessotoxin, a shellfish biotoxin, is a potent inducer of the permeability transition in isolated mitochondria and intact cells. Bba-Bioenergetics 1656(2-3), 139-147.
CrossrefGoogle Scholar
Blume, C., Rapp, M., Rath, J., Koller, H., Arendt, G., Bach, D. and Grabensee, B., 1999. Ciguatera intoxication – growing importance for differential diagnosis in an area of long distance tourism. Med. Klin. 94(1), 45-49.
Google Scholar
Bodero, M., Bovee, T.F.H., Wang, S., Hoogenboom, R.L.A.P., Klijnstra, M.D., Portier, L., Hendriksen, P.J.M. and Gerssen, A., 2018. Screening for the presence of lipophilic marine biotoxins in shellfish samples using the neuro-2a bioassay. Food Addit. Contam. – Part A 35(2), 351-365.
CrossrefGoogle Scholar
Boscolo, S., Pelin, M., De Bortoli, M., Fontanive, G., Barreras, A., Berti, F., Sosa, S., Chaloin, O., Bianco, A., Yasumoto, T., Prato, M., Poli, M. and Tubaro, A., 2013. Sandwich ELISA assay for the quantitation of palytoxin and its analogs in natural samples. Environ. Sci. Technol. 47(4), 2034-2042.
CrossrefGoogle Scholar
Bossart, G.D., Baden, D.G., Ewing, R.Y., Roberts, B. and Wright, S.D., 1998. Brevetoxicosis in manatees (Trichechus manatus latirostris) from the 1996 epizootic: gross, histologic, and immunohistochemical features. Toxicol. Pathol. 26(2), 276-282.
CrossrefGoogle Scholar
Boundy, M.J., Selwood, A.I., Harwood, D.T., McNabb, P.S. and Turner, A.D., 2015. Development of a sensitive and selective liquid chromatography-mass spectrometry method for high throughput analysis of paralytic shellfish toxins using graphitised carbon solid phase extraction. J. Chromatogr. A. 1387, 1-12.
CrossrefGoogle Scholar
Brana-Magdalena, A., Leao-Martins, J.M., Glauner, T. and Gago-Martinez, A., 2014. Intralaboratory validation of a fast and sensitive UHPLC/MS/MS method with fast polarity switching for the analysis of lipophilic shellfish toxins. J. AOAC Int. 97(2), 285-292.
CrossrefGoogle Scholar
Cabado, A.G., Leira, F., Vieytes, M.R., Vieites, J.M. and Botana, L.M., 2004. Cytoskeletal disruption is the key factor that triggers apoptosis in okadaic acid-treated neuroblastoma cells. Arch. Toxicol. 78(2), 74-85.
CrossrefGoogle Scholar
Campbell, K., Huet, A.C., Charlier, C., Higgins, C., Delahaut, P. and Elliott, C.T., 2009. Comparison of ELISA and SPR biosensor technology for the detection of paralytic shellfish poisoning toxins. J. Chromatogr. B. 877(32), 4079-4089.
CrossrefGoogle Scholar
Campbell, K., McNamee, S.E., Huet, A.C., Delahaut, P., Vilariño, N., Botana, L.M., Poli, M. and Elliott, C.T., 2014. Evolving to the optoelectronic mouse for phycotoxin analysis in shellfish. Anal. Bioanal. Chem. 406(27), 6867-6881.
CrossrefGoogle Scholar
Cao, J.J., Zheng, J., Yu, B., Wang, Q.Y., Xu, J.Y. and Li, A.F., 2011. Evaluation of mouse bioassay results in an inter-laboratory comparison for paralytic shellfish poisoning toxins. Chin. J. Oceanol. Limn. 29(4), 912-916.
Google Scholar
Chou, H.N., Chung, Y.C., Cho, W.C. and Chen, C.Y., 2003. Evidence of paralytic shellfish poisoning toxin in milkfish in South Taiwan. Food Addit. Contam. 20(6), 560-565.
CrossrefGoogle Scholar
Ciminiello, P., Dell’Aversano, C., Fattorusso, E., Forino, M., Tartaglione, L., Grillo, C. and Melchiorre, N., 2008. Putative palytoxin and its new analogue, ovatoxin-a, in Ostreopsis ovata collected along the Ligurian coasts during the 2006 toxic outbreak. J. Am. Soc. Mass. Spectr. 19(1), 111-120.
CrossrefGoogle Scholar
Cole, J.B., Heegaard, W.G., Deeds, J.R., McGrath, S.C. and Handy, S.M., 2015. Tetrodotoxin poisoning outbreak from imported dried puffer-fish Minneapolis, Minnesota, 2014. Mmwr-Morbid Mortal. W. 63(51-52), 1222-1225.
Google Scholar
Combes, R.D., 2003. The mouse bioassay for diarrhetic shellfish poisoning: a gross misuse of laboratory animals and of scientific methodology. ATLA – Altern. Lab. Anim. 31(6), 595-610.
Google Scholar
Costa, P.R., Rodrigues, S.M., Botelho, M.J. and Sampayo, M.A.D., 2003. A potential vector of domoic acid: the swimming crab Polybius henslowii Leach (Decapoda-brachyura). Toxicon. 42(2), 135-141.
CrossrefGoogle Scholar
Costa, P.R., Rosa, R. and Sampayo, M.A.M., 2004. Tissue distribution of the amnesic shellfish toxin, domoic acid, in Octopus vulgaris from the Portuguese coast. Mar. Biol. 144(5), 971-976.
CrossrefGoogle Scholar
Creppy, E.E., Traore, A., Baudrimont, I., Cascante, M. and Carratu, M.R., 2002. Recent advances in the study of epigenetic effects induced by the phycotoxin okadaic acid. Toxicology 181-182, 433-439.
Google Scholar
Cusick, K.D. and Sayler, G.S., 2013. An overview on the marine neurotoxin, saxitoxin: genetics, molecular targets, methods of detection and ecological functions. Mar. Drugs 11(4), 991-1018.
CrossrefGoogle Scholar
Daranas, A.H., Norte, M. and Fernandez, J.J., 2001. Toxic marine microalgae. Toxicon. 39(8), 1101-1132.
CrossrefGoogle Scholar
Dawson, J.F. and Holmes, C.F., 1999. Molecular mechanisms underlying inhibition of protein phosphatases by marine toxins. Front. Biosci. 4, D646-658.
CrossrefGoogle Scholar
De Haro, L., Pommier, P. and Valli, M., 2003. Emergence of imported ciguatera in Europe: report of 18 cases at the Poison Control Centre of Marseille. J. Toxicol. Clin. Toxic. 41(7), 927-930.
Google Scholar
De la Iglesia, P., Barber, E., Gimenez, G., Rodriguez-Velasco, M.L., Villar-Gonzalez, A. and Diogene, J., 2011. High-throughput analysis of amnesic shellfish poisoning toxins in shellfish by ultra-performance rapid resolution LC-MS/MS. J. AOAC Int. 94(2), 555-564.
Google Scholar
De la Rosa, L.A., Alfonso, A., Vilariño, N., Vieytes, M.R. and Botana, L.M., 2001. Modulation of cytosolic calcium levels of human lymphocytes by yessotoxin, a novel marine phycotoxin. Biochem. Pharmacol. 61(7), 827-833.
CrossrefGoogle Scholar
De Schrijver, K., Maes, I., De Man, L. and Michelet, J., 2002. An outbreak of diarrhoeic shellfish poisoning in Antwerp, Belgium. Euro Surveill. 7(10), 138-141.
CrossrefGoogle Scholar
Dechraoui, M.Y., Naar, J., Pauillac, S. and Legrand, A.M., 1999. Ciguatoxins and brevetoxins, neurotoxic polyether compounds active on sodium channels. Toxicon. 37(1), 125-143.
CrossrefGoogle Scholar
Dell’Aversano, C., Hess, P. and Quilliam, M.A., 2005. Hydrophilic interaction liquid chromatography-mass spectrometry for the analysis of paralytic shellfish poisoning (PSP) toxins. J. Chromatogr. A. 1081(2), 190-201.
CrossrefGoogle Scholar
Diener, M., Erler, K., Christian, B. and Luckas, B., 2007. Application of a new zwitterionic hydrophillic interaction chromatography column for determination of paralytic shellfish poisoning toxins. J. Sep. Sci. 30(12), 1821-1826.
CrossrefGoogle Scholar
Dorantes-Aranda, J.J., Tan, J.Y.C., Hallegraeff, G.M., Campbell, K., Ugalde, S.C., Harwood, D.T., Bartlett, J.K., Campas, M., Crooks, S., Gerssen, A., Harrison, K., Huet, A.C., Jordan, T.B., Koeberl, M., Monaghan, T., Murray, S., Nimmagadda, R., Ooms, C., Quinlan, R.K., Shi, F., Turner, A.D., Yakes, B.J. and Turnbull, A.R., 2018. Detection of paralytic shellfish toxins in mussels and oysters using the qualitative neogen lateral-flow immunoassay: an interlaboratory study. J. AOAC Int. 101(2), 468-479.
CrossrefGoogle Scholar
Egmond, P.H., 1993. Paralytic and diarrhoeic shellfish poisons: occurrence in Europe, toxicity, analysis and regulation. J. Natural Toxins 2, 41-83.
Google Scholar
European Commission (EC), 2004a. Commission Regulation (EC) No. 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for on the hygiene of foodstuffs. O.J.EU L139, 55-205. Google Scholar
European Commission (EC), 2004b. Corrigendum to Regulation (EC) No. 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. O.J.EU L226, 22-82. Google Scholar
European Food Safety Authority (EFSA), 2008a. Marine biotoxins in shellfish – yessotoxin group. Scientific Opinion of the Panel on Contaminants in the food chain (CONTAM). EFSA J. 907, 1-62. Google Scholar
European Food Safety Authority (EFSA), 2008b. Marine biotoxins in shellfish – azaspiracid group. Scientific opinion of the panel on contaminants in the food chain (CONTAM). EFSA J. 6(10), 1-52. Google Scholar
European Food Safety Authority (EFSA), 2009a. Marine biotoxins in shellfish – pectenotoxin group. Scientific opinion of the panel on contaminants in the food chain (CONTAM). EFSA J. 1109, 1-47. Google Scholar
European Food Safety Authority (EFSA), 2009b. Marine biotoxins in shellfish – saxitoxin group. Scientific opinion of the panel on contaminants in the food chain (CONTAM). EFSA J. 7(4), 1-76. Google Scholar
European Food Safety Authority (EFSA), 2010. Scientific opinion on marine biotoxins in shellfish – emerging toxins: brevetoxin group. Scientific opinion of the panel on contaminants in the food chain (CONTAM). EFSA J. 8(7), 1-29. Google Scholar
European Food Safety Authority (EFSA), 2017. Risks for public health related to the presence of tetrodotoxin (TTX) and TTX analogues in marine bivalves and gastropods. Scientific opinion of the panel on contaminants in the food chain (CONTAM). EFSA J. 15(4), 4752. Google Scholar
Fernandez-Ortega, J.F., Morales-de los Santos, J.M., Herrera-Gutierrez, M.E., Fernandez-Sanchez, V., Loureo, P.R., Rancano, A.A. and Tellez-Andrade, A., 2010. Seafood intoxication by tetrodotoxin: first case in Europe. J. Emerg. Med. 39(5), 612-617.
CrossrefGoogle Scholar
Ferrier, M., Martin, J.L. and Rooney-Varga, J.N., 2002. Stimulation of Alexandrium fundyense growth by bacterial assemblages from the Bay of Fundy. J. Appl. Microbiol. 92(4), 706-716.
CrossrefGoogle Scholar
Florida Department of Health, 2005. Available at: https://tinyurl.com/y75l9ule. Google Scholar
Fraga, M., Vilariño, N., Louzao, M.C., Campbell, K., Elliott, C.T., Kawatsu, K., Vieytes, M.R. and Botana, L.M., 2012. Detection of paralytic shellfish toxins by a solid-phase inhibition immunoassay using a microsphere-flow cytometry system. Anal. Chem. 84(10), 4350-4356.
CrossrefGoogle Scholar
Fraga, M., Vilariño, N., Louzao, M.C., Rodriguez, P., Campbell, K., Elliott, C.T. and Botana, L.M., 2013. Multidetection of paralytic, diarrheic, and amnesic shellfish toxins by an inhibition immunoassay using a microsphere-flow cytometry system. Anal. Chem. 85(16), 7794-7802.
CrossrefGoogle Scholar
Freudenthal, A., 1990. Public health aspects of ciguatera poisoning contracted on tropical vacations by North American tourists. In: Granéli, E., Sundström, B., Edler, L. and Anderson, D.M. (eds.) Toxic marine phytoplankton. Elsevier, New York, NY, USA, pp. 463-468.
Google Scholar
Friedman, M.A., Fernandez, M., Backer, L.C., Dickey, R.W., Bernstein, J., Schrank, K., Kibler, S., Stephan, W., Gribble, M.O., Bienfang, P., Bowen, R.E., Degrasse, S., Quintana, H.A.F., Loeffler, C.R., Weisman, R., Blythe, D., Berdalet, E., Ayyar, R., Clarkson-Townsend, D., Swajian, K., Benner, R., Brewer, T. and Fleming, L.E., 2017. An updated review of ciguatera fish poisoning: clinical, epidemiological, environmental, and public health management. Mar Drugs 15(3), 72.
CrossrefGoogle Scholar
Friedman, M.A., Fleming, L.E., Fernandez, M., Bienfang, P., Schrank, K., Dickey, R., Bottein, M.Y., Backer, L., Ayyar, R., Weisman, R., Watkins, S., Granade, R. and Reich, A., 2008. Ciguatera fish poisoning: treatment, prevention and management. Mar. Drugs 6(3), 456-479.
CrossrefGoogle Scholar
Fuwa, H., Kainuma, N., Tachibana, K., Tsukano, C., Satake, M. and Sasaki, M., 2004. Diverted total synthesis and biological evaluation of gambierol analogues: elucidation of crucial structural elements for potent toxicity. Chem-Eur. J. 10(19), 4894-4909.
CrossrefGoogle Scholar
Garca, C., Mardones, P., Sfeir, A. and Lagos, N., 2004. Simultaneous presence of paralytic and diarrheic shellfish poisoning toxins in Mytilus chilensis samples collected in the Chiloe Island, Austral Chilean fjords. Bio. Res. 37(4), Suppl. A, 721-731.
Google Scholar
Garcia-Altares, M., Diogene, J. and De la Iglesia, P., 2013. The implementation of liquid chromatography tandem mass spectrometry for the official control of lipophilic toxins in seafood: single-laboratory validation under four chromatographic conditions. J. Chromatogr. A. 1275, 48-60.
CrossrefGoogle Scholar
Gawley, R.E., Rein, K.S., Jeglitsch, G., Adams, D.J., Theodorakis, E.A., Tiebes, J., Nicolaou, K.C. and Baden, D.G., 1995. The relationship of brevetoxin ‘length’ and A-ring functionality to binding and activity in neuronal sodium channels. Chem. Bio. 2(8), 533-541.
CrossrefGoogle Scholar
Gehringer, M.M., 2004. Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. Febs. Lett. 557(1-3), 1-8.
CrossrefGoogle Scholar
Gerssen, A., Mulder, P.P.J., McElhinney, M.A. and De Boer, J., 2009. Liquid chromatography-tandem mass spectrometry method for the detection of marine lipophilic toxins under alkaline conditions. J. Chromatogr. A. 1216(9), 1421-1430.
CrossrefGoogle Scholar
Gessner, B.D., Bell, P., Doucette, G.J., Moczydlowski, E., Poli, M.A., VanDolah, F. and Hall, S., 1997. Hypertension and identification of toxin in human urine and serum following a cluster of mussel-associated paralytic shellfish poisoning outbreaks. Toxicon. 35(5), 711-722.
CrossrefGoogle Scholar
Gessner, B.D. and Middaugh, J.P., 1995. Paralytic shellfish poisoning in Alaska – a 20-year retrospective analysis. Am. J. Epidemiol. 141(8), 766-770.
CrossrefGoogle Scholar
Gessner, B.D. and Schloss, M., 1996. A population-based study of paralytic shell fish poisoning in Alaska. Alaska Med. 38(2), 54-58, 68.
Google Scholar
Gestal-Otero, J.J., 2000. Nonneurotoxic toxins. In: Botana, L.M. (ed.) Seafood and freshwater toxins, pharmacology, physiology, and detection, 2nd edition. CRC Press, Boca Raton, FL, USA, pp. 45-64.
Google Scholar
Glaziou, P. and Legrand, A.M., 1994. The epidemiology of ciguatera fish poisoning. Toxicon. 32(8), 863-873.
CrossrefGoogle Scholar
Hackett, J.D., Wisecaver, J.H., Brosnahan, M.L., Kulis, D.M., Anderson, D.M., Bhattacharya, D., Plumley, F.G. and Erdner, D.L., 2013. Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. Mol. Bio. Evo. 30(1), 70-78.
Google Scholar
Hall, S., Strichartz, G., Moczydlowski, E., Ravindran, A. and Reichardt, P.B., 1990. The saxitoxins – sources, chemistry, and pharmacology. Acs. Sym. Ser. 418, 29-65.
Google Scholar
Hallegraeff, G.M., 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32(2), 79-99.
CrossrefGoogle Scholar
Hamasaki, K., Kogure, K. and Ohwada, K., 1996. An improved method of tissue culture bioassay for tetrodotoxin. Fisheries Sci. 62(5), 825-829.
CrossrefGoogle Scholar
Hampson, D.R., Huang, X.P., Wells, J.W., Walter, J.A. and Wright, J.L.C., 1992. Interaction of domoic acid and several derivatives with kainic acid and ampa binding-sites in rat-brain. Eur. J. Pharmacol. 218(1), 1-8.
CrossrefGoogle Scholar
Hampson, D.R. and Manalo, J.L., 1998. The activation of glutamate receptors by kainic acid and domoic acid. Nat. Toxin. 6(3-4), 153-158.
CrossrefGoogle Scholar
Haque, S.M. and Onoue, Y., 2002. Variation in toxin compositions of two harmful raphidophytes, Chattonella antiqua and Chattonella marina, at different salinities. Environ. Toxicol. 17(2), 113-118.
CrossrefGoogle Scholar
Hashimoto, S., Nishimura, K., Takahashi, K. and Itabashi, Y., 2011. Evaluation of the possibility that free fatty acids cause false-positive result in diarrhetic shellfish poisoning mouse bioassay in actual use. Food Hyg. Safe Sci. 52(3), 194-198.
Google Scholar
Hilgemann, D.W., 2003. From a pump to a pore: how palytoxin opens the gates. Proc. Nat. Acad. Sci. USA 100(2), 386-388.
CrossrefGoogle Scholar
Hogg, R.C., Lewis, R.J. and Adams, D.J., 1998. Ciguatoxin (CTX-1) modulates single tetrodotoxin-sensitive sodium channels in rat parasympathetic neurones. Neurosci. Lett. 252(2), 103-106.
CrossrefGoogle Scholar
Hold, G.L., Smith, E.A., Birkbeck, T.H. and Gallacher, S., 2001. Comparison of paralytic shellfish toxin (PST) production by the dinoflagellates Alexandrium lusitanicum NEPCC 253 and Alexandrium tamarense NEPCC 407 in the presence and absence of bacteria. FEMS Microbiol. Ecol. 36(2-3), 223-234.
CrossrefGoogle Scholar
Holmes, C.F.B., 1991. Liquid chromatography-linked protein phosphatase bioassay – a highly sensitive marine bioscreen for okadaic acid and related diarrhetic shellfish toxins. Toxicon. 29(4-5), 469-477.
CrossrefGoogle Scholar
Homaira, N., Rahman, M., Luby, S.P., Rahman, M., Haider, M.S., Faruque, L.I., Khan, D., Parveen, S. and Gurley, E.S., 2010. Multiple outbreaks of puffer fish intoxication in Bangladesh, 2008. Am. J. Trop. Med. Hyg. 83(2), 440-444.
CrossrefGoogle Scholar
How, C.K., Chern, C.H., Huang, Y.C., Wang, L.M. and Lee, C.H., 2003. Tetrodotoxin poisoning. Am. J. Emerg. Med. 21(1), 51-54.
CrossrefGoogle Scholar
Hwang, D.F., Shiu, Y.C., Hwang, P.A. and Lu, Y.H., 2002. Tetrodotoxin in gastropods (Snails) implicated in food poisoning in northern Taiwan. J. Food Protect. 65(8), 1341-1344.
CrossrefGoogle Scholar
Hwang, P.A., Tsai, Y.H., Deng, J.F., Cheng, C.A., Ho, P.H. and Hwang, D.F., 2005. Identification of tetrodotoxin in a marine gastropod (Nassarius glans) responsible for human morbidity and mortality in Taiwan. J. Food Protect. 68(8), 1696-1701.
CrossrefGoogle Scholar
Ikehara, T., Imamura, S., Oshiro, N., Ikehara, S., Shinjo, F. and Yasumoto, T., 2008. A protein phosphatase 2A (PP2A) inhibition assay using a recombinant enzyme for rapid detection of microcystins. Toxicon. 51(8), 1368-1373.
CrossrefGoogle Scholar
Ishida, H., Nozawa, A., Hamano, H., Naoki, H., Fujita, T., Kaspar, H.F. and Tsuji, K., 2004a. Brevetoxin B5, a new brevetoxin analog isolated from cockle Austrovenus stutchburyi in New Zealand, the marker for monitoring shellfish neurotoxicity. Tetrahedron Lett. 45(1), 29-33.
CrossrefGoogle Scholar
Ishida, H., Nozawa, A., Nukaya, H., Rhodes, L., McNabb, P., Holland, P.T. and Tsuji, K., 2004b. Confirmation of brevetoxin metabolism in cockle, Austrovenus stutchburyi, and greenshell mussel, Perna canaliculus, associated with New Zealand neurotoxic shellfish poisoning, by controlled exposure to Karenia brevis culture. Toxicon. 43(6), 701-712.
CrossrefGoogle Scholar
Ishida, H., Nozawa, A., Nukaya, H. and Tsuji, K., 2004c. Comparative concentrations of brevetoxins PbTx-2, PbTx-3, BTX-B1 and BTX-B5 in cockle, Austrovenus stutchburyi, greenshell mussel, Perna canaliculus, and Pacific oyster, Crassostrea gigas, involved neurotoxic shellfish poisoning in New Zealand. Toxicon. 43(7), 779-789.
CrossrefGoogle Scholar
Islam, Q.T., Razzak, M.A., Islam, M.A., Bari, M.I., Basher, A., Chowdhury, F.R., Sayeduzzaman, A.B.M., Ahasan, H.A.M.N., Faiz, M.A., Arakawa, O., Yotsu-Yamashita, M., Kuch, U. and Mebs, D., 2011. Puffer fish poisoning in Bangladesh: clinical and toxicological results from large outbreaks in 2008. Trans. Royal Soc. Trop. Med. Hyg. 105(2), 74-80.
CrossrefGoogle Scholar
Ito, E. and Terao, K., 1994. Injury and recovery process of intestine caused by okadaic acid and related compounds. Nat. Toxin. 2(6), 371-377.
Google Scholar
Iwamoto, M., Ayers, T., Mahon, B.E. and Swerdlow, D.L., 2010. Epidemiology of seafood-associated infections in the United States. Clin. Microbiol. Rev. 23(2), 399.
CrossrefGoogle Scholar
Jawaid, W., Meneely, J., Campbell, K., Hooper, M., Melville, K., Holmes, S., Rice, J. and Elliott, C., 2013. Development and validation of the first high performance-lateral flow immunoassay (HP-LFIA) for the rapid screening of domoic acid from shellfish extracts. Talanta. 116, 663-669.
CrossrefGoogle Scholar
Jawaid, W., Meneely, J.P., Campbell, K., Melville, K., Holmes, S.J., Rice, J. and Elliott, C.T., 2015. Development and validation of a lateral flow immunoassay for the rapid screening of okadaic acid and all dinophysis toxins from shellfish extracts. J. Agr. Food Chem. 63(38), 8574-8583.
CrossrefGoogle Scholar
Jeffery, B., Barlow, T., Moizer, K., Paul, S. and Boyle, C., 2004. Amnesic shellfish poison. Food Chem. Toxicol. 42(4), 545-557.
CrossrefGoogle Scholar
Jorgensen, K. and Jensen, L.B., 2004. Distribution of diarrhetic shellfish poisoning toxins in consignments of blue mussel. Food Addit. Contam. 21(4), 341-347.
CrossrefGoogle Scholar
Kanchanapongkul, J., 2008. Tetrodotoxin poisoning following ingestion of the toxic eggs of the horseshoe crab Carcinoscorpius rotundicauda, a case series from 1994 through 2006. Southeast Asian J.Trop. Med. Publ. Health 39(2), 303-306.
Google Scholar
Kawatsu, K., Kanki, M., Harada, T. and Kumeda, Y., 2014. A highly rapid and simple competitive enzyme-linked immunosorbent assay for monitoring paralytic shellfish poisoning toxins in shellfish. Food Chem. 162, 94-98.
CrossrefGoogle Scholar
Kirkpatrick, B., Fleming, L.E., Squicciarini, D., Backer, L.C., Clark, R., Abraham, W., Benson, J., Cheng, Y.S., Johnson, D., Pierce, R., Zaias, J., Bossart, G.D. and Baden, D.G., 2004. Literature review of Florida red tide: implications for human health effects. Harmful Algae 3(2), 99-115.
CrossrefGoogle Scholar
Kleivdal, H., Kristiansen, S.I., Nilsen, M.V., Goksoyr, A., Briggs, L., Holland, P. and McNabb, P., 2007. Determination of domoic acid toxins in shellfish by Biosense ASP ELISA – a direct competitive enzyme-linked immunosorbent assay: collaborative study. J. AOAC Int. 90(4), 1011-1027.
Google Scholar
Knutsen, H.K., Alexander, J., Barregård, L., Bignami, M., Brüschweiler, B., Ceccatelli, S., Cottrill, B., Dinovi, M., Edler, L., Grasl-Kraupp, B., Hogstrand, C., Hoogenboom, L., Nebbia, C.S., Oswald, I.P., Rose, M., Roudot, A.-C., Schwerdtle, T., Vleminckx, C., Vollmer, G., Wallace, H., Arnich, N., Benford, D., Botana, L., Viviani, B., Arcella, D., Binaglia, M., Horvath, Z., Steinkellner, H., Van Manen, M. and Petersen, A., 2017. Risks for public health related to the presence of tetrodotoxin (TTX) and TTX analogues in marine bivalves and gastropods. Eur. Food Saf. Auth. J. 15(4): 1-65.
Google Scholar
Kogure, K., Tamplin, M.L., Simidu, U. and Colwell, R.R., 1988. A tissue-culture assay for tetrodotoxin, saxitoxin and related toxins. Toxicon. 26(2), 191-197.
CrossrefGoogle Scholar
Lagos, N., Onodera, H., Zagatto, P.A., Andrinolo, D., Azevedo, S.M.F.Q. and Oshima, Y., 1999. The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon. 37(10), 1359-1373.
CrossrefGoogle Scholar
Lai, W.Q., Zhuang, J.Y. and Tang, D.P., 2015. Novel colorimetric immunoassay for ultrasensitive monitoring of Brevetoxin B based on enzyme-controlled chemical conversion of sulfite to sulfate. J. Agr. Food Chem. 63(7), 1982-1989.
CrossrefGoogle Scholar
Lawrence, J.F., Niedzwiadek, B. and Menard, C., 2005. Quantitative determination of paralytic shellfish poisoning toxins in shellfish using prechromatographic oxidation and liquid chromatography with fluorescence detection: Collaborative study. J. AOAC Int. 88(6), 1714-1732.
Google Scholar
Laycock, M.V., Donovan, M.A. and Easy, D.J., 2010. Sensitivity of lateral flow tests to mixtures of saxitoxins and applications to shellfish and phytoplankton monitoring. Toxicon. 55(2-3), 597-605.
CrossrefGoogle Scholar
LeDoux, M. and Hall, S., 2000. Proficiency testing of eight french laboratories in using the AOAC mouse bioassay for paralytic shellfish poisoning: interlaboratory collaborative study. J. AOAC Int. 83(2), 305-310.
Google Scholar
Lee, C.H. and Ruben, P.C., 2008. Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels 2(6), 407-412.
CrossrefGoogle Scholar
Lefebvre, K.A., Silver, M.W., Coale, S.L. and Tjeerdema, R.S., 2002. Domoic acid in planktivorous fish in relation to toxic Pseudo-nitzschia cell densities. Mar. Biol. 140(3), 625-631.
CrossrefGoogle Scholar
Legrand, A.-M., Cruchet, P., Bagnis, R., Murata, M., Ishibashi, Y. and Yasumoto, T., 1990. Chromatographic and spectral evidence for the presence of multiple ciguatera toxins. In: Granéli, E., Sundström, B., Edler, L. and Anderson, D.M. (eds.) Toxic marine phytoplankton. Elsevier, New York, NY, USA, pp. 374-378.
Google Scholar
Lehane, L. and Lewis, R.J., 2000. Ciguatera: recent advances but the risk remains. Int. J. Food Microbiol. 61(2-3), 91-125.
CrossrefGoogle Scholar
Lewis, R.J., 2001. The changing face of ciguatera. Toxicon. 39(1), 97-106.
CrossrefGoogle Scholar
Lewis, R.J., Yang, A.J. and Jones, A., 2009. Rapid extraction combined with LC-tandem mass spectrometry (CREM-LC/MS/MS) for the determination of ciguatoxins in ciguateric fish flesh. Toxicon. 54(1), 62-66.
CrossrefGoogle Scholar
Llewellyn, L.E., Dodd, M.J., Robertson, A., Ericson, G., De Koning, C. and Negri, A.P., 2002. Post-mortem analysis of samples from a human victim of a fatal poisoning caused by the xanthid crab, Zosimus aeneus. Toxicon. 40(10), 1463-1469.
CrossrefGoogle Scholar
Luu, H.A., Chen, D.Z.X., Magoon, J., Worms, J., Smith, J. and Holmes, C.F.B., 1993. Quantification of diarrhetic shellfish toxins and identification of novel protein phosphatase inhibitors in marine-phytoplankton and mussels. Toxicon. 31(1), 75-83.
CrossrefGoogle Scholar
Manger, R.L., Leja, L.S., Lee, S.Y., Hungerford, J.M. and Wekell, M.M., 1993. Tetrazolium-based cell bioassay for neurotoxins active on voltage-sensitive sodium-channels – semiautomated assay for saxitoxins, brevetoxins, and ciguatoxins. Anal. Biochem. 214(1), 190-194.
CrossrefGoogle Scholar
Maranda, L., Wang, R., Masuda, K. and Shimizu, Y., 1990. Investigation of the source of domoic acid in mussels. In: Granéli, E., Sundström, B., Edler, L. and Anderson, D.M. (eds.) Toxic marine phytoplankton. Elsevier, New York, NY, USA, pp. 300-304.
Google Scholar
Mattei, C., Vetter, I., Eisenblatter, A., Krock, B., Ebbecke, M., Desel, H. and Zimmermann, K., 2014. Ciguatera fish poisoning: a first epidemic in Germany highlights an increasing risk for European countries. Toxicon. 91, 76-83.
CrossrefGoogle Scholar
McCall, J.R., Jacocks, H.M., Niven, S.C., Poli, M.A., Baden, D.G. and Bourdelais, A.J., 2014. Development and utilization of a fluorescence-based receptor-binding assay for the site 5 voltage-sensitive sodium channel ligands brevetoxin and ciguatoxin. J. AOAC Int. 97(2), 307-315.
CrossrefGoogle Scholar
McCarron, P., Giddings, S.D. and Quilliam, M.A., 2011. A mussel tissue certified reference material for multiple phycotoxins. Part 2: liquid chromatography-mass spectrometry, sample extraction and quantitation procedures. Anal. Bioanal. Chem. 400(3), 835-846.
Google Scholar
McCarron, P., Kilcoyne, J., Miles, C.O. and Hess, P., 2009. Formation of azaspiracids-3, -4, -6, and -9 via decarboxylation of carboxyazaspiracid metabolites from shellfish. J. Agric. Food Chem. 57(1), 160-169.
CrossrefGoogle Scholar
Mccollum, J.P., Pearson, R.C.M., Ingham, H.R., Wood, P.C. and Dewar, H.A., 1968. An epidemic of mussel poisoning in North-East England. Lancet 2(7571), 767-770.
Google Scholar
McFarren, E.F., Silva, F.J., Tanabe, H., Wilson, W.B., Campbell, J.E. and Lewis, K.H., 1965. The occurrence of a ciguatera-like poison in oysters, clams, and Gymnodinium breve cultures. Toxicon. 3(2), 111-123.
CrossrefGoogle Scholar
McNabb, P., Selwood, A.I. and Holland, P.T., 2005. Multiresidue method for determination of algal toxins in shellfish: single-laboratory validation and interlaboratory study. J. AOAC Int. 88(3), 761-772.
Google Scholar
McNabb, P.S., Selwood, A.I., Van Ginkel, R., Boundy, M. and Holland, P.T., 2012. Determination of brevetoxins in shellfish by LC/MS/MS: single-laboratory validation. J. AOAC Int. 95(4), 1097-1105.
CrossrefGoogle Scholar
Mebs, D., 1977. Muschelvergiftungen. Naturwiss. Rundschau. 30, 367-369.
Google Scholar
Morales-Tlalpan, V. and Vaca, L., 2002. Modulation of the maitotoxin response by intracellular and extracellular cations. Toxicon. 40(5), 493-500.
CrossrefGoogle Scholar
Morohashi, A., Satake, M., Naoki, H., Kaspar, H.F., Oshima, Y. and Yasumoto, T., 1999. Brevetoxin B4 isolated from greenshell mussels Perna canaliculus, the major toxin involved in neurotoxic shellfish poisoning in New Zealand. Nat. Toxin. 7(2), 45-48.
CrossrefGoogle Scholar
Moustafa, A., Loram, J.E., Hackett, J.D., Anderson, D.M., Plumley, F.G. and Bhattacharya, D., 2009. Origin of saxitoxin biosynthetic genes in cyanobacteria. PLoS ONE 4(6), e5758.
CrossrefGoogle Scholar
Munday, R., Selwood, A.I. and Rhodes, L., 2012. Acute toxicity of pinnatoxins E, F and G to mice. Toxicon. 60(6), 995-999.
CrossrefGoogle Scholar
Murata, K., Satake, M., Naoki, H., Kaspar, H.F. and Yasumoto, T., 1998. Isolation and structure of a new brevetoxin analog, brevetoxin B2, from greenshell mussels from New Zealand. Tetrahedron 54(5-6), 735-742.
CrossrefGoogle Scholar
Nagashima, Y., Matsumoto, T., Kadoyama, K., Ishizaki, S., Taniyama, S., Takatani, T., Arakawa, O. and Terayama, M., 2012. Tetrodotoxin poisoning due to smooth-backed blowfish, Lagocephalus inermis and the toxicity of L. inermis caught off the Kyushu coast, Japan. J. Food Hyg. Soc. Japan 53(2), 85-90.
CrossrefGoogle Scholar
Nicolas, J., Hoogenboom, R.L.A.P., Hendriksen, P.J.M., Bodero, M., Bovee, T.F.H., Rietjens, I.M.C.M. and Gerssen, A., 2017. Marine biotoxins and associated outbreaks following seafood consumption: prevention and surveillance in the 21st century. Glob. Food Secur. Agr. 15, 11-21.
Google Scholar
Noguchi, T. and Ebesu, J.S.M., 2001. Puffer poisoning: epidemiology and treatment. J. Toxicol. 20(1), 1-10.
Google Scholar
Nordt, S.P., Wu, J., Zahller, S., Clark, R.F. and Cantrell, F.L., 2011. Palytoxin poisoning after dermal contact with zoanthid coral. J. Emerg. Med. 40(4), 397-399.
CrossrefGoogle Scholar
Nozawa, A., Tsuji, K. and Ishida, H., 2003. Implication of brevetoxin B1 and PbTx-3 in neurotoxic shellfish poisoning in New Zealand by isolation and quantitative determination with liquid chromatography-tandem mass spectrometry. Toxicon. 42(1), 91-103.
CrossrefGoogle Scholar
Onodera, H., Satake, M., Oshima, Y., Yasumoto, T. and Carmichael, W.W., 1997. New saxitoxin analogues from the freshwater filamentous cyanobacterium Lyngbya wollei. Nat. Toxin. 5(4), 146-151.
CrossrefGoogle Scholar
Orsini, L., Procaccini, G., Sarno, D. and Montresor, M., 2004. Multiple rDNA ITS-types within the diatom Pseudo-nitzschia delicatissima (Bacillariophyceae) and their relative abundances across a spring bloom in the Gulf of Naples. Mar. Ecol. Prog. Ser. 271, 87-98.
CrossrefGoogle Scholar
Perez-Gomez, A., Garcia-Rodriguez, A., James, K.J., Ferrero-Gutierrez, A., Novelli, A. and Fernandez-Sanchez, M.T., 2004. The marine toxin dinophysistoxin-2 induces differential apoptotic death of rat cerebellar neurons and astrocytes. Toxicol. Sci. 80(1), 74-82.
CrossrefGoogle Scholar
Pierce, R.H., Henry, M.S., Proffitt, L.S. and Hasbrouck, P., 1990. Red tide toxin(brevetoxin) enrichment in marine aerosol. In: Granéli, E., Sundström, B., Edler, L. and Anderson, D.M. (eds.) Toxic marine phytoplankton. Elsevier, New York, NY, USA, pp. 397-402.
Google Scholar
Poli, M.A., Musser, S.M., Dickey, R.W., Eilers, P.P. and Hall, S., 2000. Neurotoxic shellfish poisoning and brevetoxin metabolites: a case study from Florida. Toxicon. 38(7), 981-993.
CrossrefGoogle Scholar
Potasman, I., Paz, A. and Odeh, M., 2002. Infectious outbreaks associated with bivalve shellfish consumption: a worldwide perspective. Clin. Infect. Dis. 35(8), 921-928.
CrossrefGoogle Scholar
Pulido, O.M., 2008. Domoic acid toxicologic pathology: a review. Mar. Drugs. 6(2), 180-219.
CrossrefGoogle Scholar
Purkerson-Parker, S.L., Fieber, L.A., Rein, K.S., Podona, T. and Baden, D.G., 2000. Brevetoxin derivatives that inhibit toxin activity. Chem. Biol. 7(6), 385-393.
CrossrefGoogle Scholar
Quilliam, M., Hess, P. and Dell’Aversano, C., 2001a. Recent developments in the analysis of phycotoxins by liquid chromatography mass spectrometry. Proceedings of the Xth International IUPAC Symposium on Mycotoxins and Phycotoxins. May 21-25, 2000. Guaruja, Brazil.
Google Scholar
Quilliam, M.A., Hess, P. and Dell’Aversano, C., 2001b. Recent developments in the analysis of phycotoxins by liquid chromatography-mass spectrometry. In: Samson, R.A. abd De Koe, J.G.W.J. (eds.) Mycotoxins and phycotoxins in perspective at the turn of the millenium. IUPAC, Research Triangle Park, NC, USA, pp. 383-391.
Google Scholar
Quilliam, M.A., Sim, P.G., McCulloch, A.W. and McInnes, A.G., 1989. High-performance liquid-chromatography of domoic acid, a marine neurotoxin, with application to shellfish and plankton. Int. J. Environ. Ch. 36(3), 139-154.
Google Scholar
Quod, J.P. and Turquet, J., 1996. Ciguatera in Reunion Island (SW Indian Ocean): epidemiology and clinical patterns. Toxicon. 34(7), 779-785.
CrossrefGoogle Scholar
Richard, D.J.A., Arsenault, E., Cembella, A.D. and Quilliam, M.A., 2000. Investigations into the toxicology and pharmacology of spirolides, a novel group of shellfish toxins. In: Hallegraeff, G.M., Blackburn, S.I., Bolch, C.J. and Lewis, R.J. (eds.). Proceedings of the 9th Conference on Harmfull algal blooms. February 7-11, 2000. Hobart, Australia, pp. 383-386.
Google Scholar
Rubio, F., Kamp, L., Carpino, J., Faltin, E., Loftin, K., Molgo, J. and Araoz, R., 2014. Colorimetric microtiter plate receptor-binding assay for the detection of freshwater and marine neurotoxins targeting the nicotinic acetylcholine receptors. Toxicon. 91, 45-56.
CrossrefGoogle Scholar
Samdal, I.A., Lovberg, K.E., Briggs, L.R., Kilcoyne, J., Xu, J.Y., Forsyth, C.J. and Miles, C.O., 2015. Development of an ELISA for the detection of azaspiracids. J. Agr. Food Chem. 63(35), 7855-7861.
CrossrefGoogle Scholar
Samdal, I.A., Naustvoll, L.J., Olseng, C.D., Briggs, L.R. and Miles, C.O., 2004. Use of ELISA to identify Protoceratium reticulatum as a source of yessotoxin in Norway. Toxicon. 44(1), 75-82.
CrossrefGoogle Scholar
Satake, M., Ofuji, K., Naoki, H., James, K.J., Furey, A., McMahon, T., Silke, J. and Yasumoto, T., 1998. Azaspiracid, a new marine toxin having unique spiro ring assemblies, isolated from Irish mussels, Mytilus edulis. J. Am. Chem. Soc. 120(38), 9967-9968.
CrossrefGoogle Scholar
Sato, S., Ogata, T. and Kodama, M., 1993. Wide distribution of toxins with sodium channel blocking activity similar to tetrodotoxin and paralytic shellfish toxins in marine animals. In: Granéli, E., Sundström, B., Edler, L. and Anderson, D.M. (eds.) Toxic marine phytoplankton. Elsevier, New York, NY, USA, pp. 429-434.
Google Scholar
Schnorf, H., Taurarii, M. and Cundy, T., 2002. Ciguatera fish poisoning – a double-blind randomized trial of mannitol therapy. Neurology 58(6), 873-880.
CrossrefGoogle Scholar
Selwood, A.I., Van Ginkel, R., Harwood, D.T., McNabb, P.S., Rhodes, L.R. and Holland, P.T., 2012. A sensitive assay for palytoxins, ovatoxins and ostreocins using LC-MS/MS analysis of cleavage fragments from micro-scale oxidation. Toxicon. 60(5), 810-820.
CrossrefGoogle Scholar
Shimizu, Y., 1996. Microalgal metabolites: a new perspective. Ann. Rev. Microbiol. 50, 431-465.
CrossrefGoogle Scholar
Shui, L.M., Chen, K., Wang, J.Y., Mei, H.Z., Wang, A.Z., Lu, Y.H. and Hwang, D.F., 2003. Tetrodotoxin-associated snail poisoning in Zhoushan: a 25-year retrospective analysis. J. Food Prot. 66(1), 110-114.
CrossrefGoogle Scholar
Skinner, M.P., Brewer, T.D., Johnstone, R., Fleming, L.E. and Lewis, R.J., 2011. Ciguatera fish poisoning in the Pacific Islands (1998 to 2008). Plos. Neglect. Trop. D. 5(12), e1416.
CrossrefGoogle Scholar
Smayda, T.J., 1990. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Granéli, E., Sundström, B., Edler, L. and Anderson, D.M. (eds.) Toxic marine phytoplankton. Elsevier, New York, NY, USA, pp. 29-40.
Google Scholar
Smayda, T.J., 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42(5), 1137-1153.
CrossrefGoogle Scholar
Smienk, H.G.F., Calvo, D., Razquin, P., Dominguez, E. and Mata, L., 2012. Single laboratory validation of a ready-to-use phosphatase inhibition assay for detection of okadaic acid toxins. Toxins 4(5), 339-352.
CrossrefGoogle Scholar
Smienk, H., Dominguez, E., Rodriguez-Velasco, M.L., Clarke, D., Kapp, K., Katikou, P., Cabado, A.G., Otero, A., Vieites, J.M., Razquin, P. and Mata, L., 2013. Quantitative determination of the okadaic acid toxins group by a colorimetric phosphatase inhibition assay: interlaboratory study. J. AOAC Int. 96(1), 77-85.
CrossrefGoogle Scholar
Smith, J., Cormier, R., Worms, J., Bird, C., Quilliam, M., Pocklington, R., Angus, R. and Hanic, L.A., 1990. Toxic blooms of the domoic acid containing diatom nitzschia-pungens in the Cardigan River Prince Edward Island Canada in 1988. Toxic marine phytoplankton; proceedings of the 4th international conference on marine phytoplankton. June 26-30, 1990. Lund, Sweden.
Google Scholar
Soto, I.M., Cambazoglu, M.K., Boyette, A.D., Broussard, K., Sheehan, D., Howden, S.D., Shiller, A.M., Dzwonkowski, B., Hode, L., Fitzpatrick, P.J., Arnone, R.A., Mickle, P.F. and Cressman, K., 2018. Advection of Karenia brevis blooms from the Florida Panhandle towards Mississippi coastal waters. Harmful Algae 72, 46-64.
CrossrefGoogle Scholar
Stewart, J.E., Marks, L.J., Gilgan, M.W., Pfeiffer, E. and Zwicker, B.M., 1998. Microbial utilization of the neurotoxin domoic acid: blue mussels (Mytilus edulis) and soft shell clams (Mya arenaria) as sources of the microorganisms. Can. J. Microbiol. 44(5), 456-464.
CrossrefGoogle Scholar
Taniyama, S., Mahmud, Y., Terada, M., Takatani, T., Arakawa, O. and Noguchi, T., 2002. Occurrence of a food poisoning incident by palytoxin from a serranid Epinephelus sp in Japan. J. Nat. Toxins 11(4), 277-282.
Google Scholar
Terzagian, R., 2006. Five cluster of Neurotoxic Shellfish Poisoning (NSP) in Lee County, July 2006. Florida Department of Health, Tallahassee, FL, USA.
Google Scholar
Thomas, K.M., Beach, D.G., Reeves, K.L., Gibbs, R.S., Kerrin, E.S., McCarron, P. and Quilliam, M.A., 2017. Hydrophilic interaction liquid chromatography-tandem mass spectrometry for quantitation of paralytic shellfish toxins: validation and application to reference materials. Anal. Bioanal. Chem. 409(24), 5675-5687.
CrossrefGoogle Scholar
Thompson, C.A., Jazuli, F., Taggart, L.R. and Boggild, A.K., 2017. Ciguatera fish poisoning after Caribbean travel. Can. Med. Assoc. J. 189(1), E19-E21.
CrossrefGoogle Scholar
Tillmann, U., Elbrachter, M., Krock, B., John, U. and Cembella, A., 2009. Azadinium spinosum gen. et sp nov (Dinophyceae) identified as a primary producer of azaspiracid toxins. Eur. J. Phycol. 44(1), 63-79.
Google Scholar
Todd, E.C.D., 1993. Domoic acid and amnesic shellfish poisoning – a review. J. Food Protect. 56(1), 69-83.
CrossrefGoogle Scholar
Trainer, V.L. and Baden, D.G., 1999. High affinity binding of red tide neurotoxins to marine mammal brain. Aquat. Toxicol. 46(2), 139-148.
CrossrefGoogle Scholar
Tsai, Y.H., Hwang, D.F., Cheng, C.A., Hwang, C.C. and Deng, J.F., 2006. Determination of tetrodotoxin in human urine and blood using C18 cartridge column, ultrafiltration and LC-MS. J. Chromatogr. B. 832(1), 75-80.
CrossrefGoogle Scholar
Tsumuraya, T., Fujii, I. and Hirama, M., 2014. Preparation of anti-ciguatoxin monoclonal antibodies using synthetic haptens: sandwich ELISA detection of ciguatoxins. J. AOAC Int. 97(2), 373-379.
CrossrefGoogle Scholar
Tubaro, A., Florio, C., Luxich, E., Sosa, S., DellaLoggia, R. and Yasumoto, T., 1996. A protein phosphatase 2A inhibition assay for a fast and sensitive assessment of okadaic acid contamination in mussels. Toxicon. 34(7), 743-752.
CrossrefGoogle Scholar
Turner, A.D., Dhanji-Rapkova, M., Algoet, M., Suarez-Isla, B.A., Cordova, M., Caceres, C., Murphy, C.J., Casey, M. and Lees, D.N., 2012. Investigations into matrix components affecting the performance of the official bioassay reference method for quantitation of paralytic shellfish poisoning toxins in oysters. Toxicon. 59(2), 215-230.
CrossrefGoogle Scholar
Turner, A.D., Dhanji-Rapkova, M., Dean, K., Milligan, S., Hamilton, M., Thomas, J., Poole, C., Haycock, J., Spelman-Marriott, J., Watson, A., Hughes, K., Marr, B., Dixon, A. and Coates, L., 2018. Fatal canine intoxications linked to the presence of saxitoxins in stranded marine organisms following winter storm activity. Toxins. 10(3), E94.
CrossrefGoogle Scholar
Turner, A.D., Higgins, C., Davidson, K., Veszelovszki, A., Payne, D., Hungerford, J. and Higman, W., 2015a. Potential threats posed by new or emerging marine biotoxins in UK waters and examination of detection methodology used in their control: brevetoxins. Mar. Drugs 13(3), 1224-1254.
CrossrefGoogle Scholar
Turner, A.D., McNabb, P.S., Harwood, D.T., Selwood, A.I. and Boundy, M.J., 2015b. Single-laboratory validation of a multitoxin ultra-performance LC-hydrophilic interaction LC-MS/MS method for quantitation of paralytic shellfish toxins in bivalve shellfish. J. AOAC Int. 98(3), 609-621.
CrossrefGoogle Scholar
Turner, A.D., Powell, A., Schofield, A., Lees, D.N. and Baker-Austin, C., 2015c. Detection of the pufferfish toxin tetrodotoxin in European bivalves, England, 2013 to 2014. Eurosurveill. 20(2), 2-8.
Google Scholar
Van den Top, H.J., Gerssen, A., McCarron, P. and Van Egmond, H.P., 2011. Quantitative determination of marine lipophilic toxins in mussels, oysters and cockles using liquid chromatography-mass spectrometry: inter-laboratory validation study. Food Addit. Contam. A. 28(12), 1745-1757.
Google Scholar
Van Dolah, F.M., Fire, S.E., Leighfield, T.A., Mikulski, C.M. and Doucette, G.J., 2012. Determination of paralytic shellfish toxins in shellfish by receptor binding assay: collaborative study. J. AOAC Int. 95(3), 795-812.
CrossrefGoogle Scholar
Van Dolah, F.M., Leighfield, T.A., Haynes, B.L., Hampson, D.R. and Ramsdell, J.S., 1997. A microplate receptor assay for the amnesic shellfish poisoning toxin, domoic acid, utilizing a cloned glutamate receptor. Anal. Biochem. 245(1), 102-105.
CrossrefGoogle Scholar
Vilariño, N., Fonfria, E.S., Molgo, J., Araoz, R. and Botana, L.M., 2009. Detection of Gymnodimine-A and 13-Desmethyl C Spirolide phycotoxins by fluorescence polarization. Anal. Chem. 81(7), 2708-2714.
CrossrefGoogle Scholar
Vilariño, N., Louzao, C.M., Fraga, M. and Botana, L.M., 2015. From science to policy: dynamic adaptation of legal regulations on aquatic biotoxins. In: Botana, L.M., Louzao, C.M. and Vilariño, N. (eds.) Climate change and marine and freshwater toxins. De Gruyter, Berlin, Germany, pp. 441-483.
Google Scholar
Visciano, P., Schirone, M., Berti, M., Milandri, A., Tofalo, R. and Suzzi, G., 2016. Marine biotoxins: occurrence, toxicity, regulatory limits and reference methods. Front. Microbiol. 7, 1051.
CrossrefGoogle Scholar
Vlamis, A., Katikou, P., Rodriguez, I., Rey, V., Alfonso, A., Papazachariou, A., Zacharaki, T., Botana, A.M. and Botana, L.M., 2015. First detection of tetrodotoxin in Greek shellfish by UPLC-MS/MS potentially linked to the presence of the dinoflagellate prorocentrum minimum. Toxins. 7(5), 1779-1807.
CrossrefGoogle Scholar
Wang, D.Z., 2008. Neurotoxins from marine dinoflagellates: a brief review. Mar. Drugs 6(2), 349-371.
CrossrefGoogle Scholar
Watkins, S.M., Reich, A., Fleming, L.E. and Hammond, R., 2008. Neurotoxic shellfish poisoning. Mar. Drugs 6(3), 431-455.
CrossrefGoogle Scholar
Wekell, J.C., Gauglitz Jr., E.J., Barnett, H.J., Hatfield, C.L., Simons, D. and Ayres, D., 1994. Occurrence of domoic acid in Washington state razor clams (Siliqua patula) during 1991-1993. Nat. Toxin. 2(4), 197-205.
CrossrefGoogle Scholar
Woo, C.K. and Bahna, S.L., 2011. Not all shellfish ‘allergy’ is allergy! Clin. Transl. Allerg. 1(1), 3.
Google Scholar
Woofter, R., Dechraoui, M.Y.B., Garthwaite, I., Towers, N.R., Gordon, C.J., Cordova, J. and Ramsdell, J.S., 2003. Measurement of brevetoxin levels by radioimmunoassay of blood collection cards after acute, long-term, and low-dose exposure in mice. Environ. Health Persp. 111(13), 1595-1600.
CrossrefGoogle Scholar
Work, T., Beale, A., Fritz, L., Quilliam, M., Silver, M., Buck, K. and Wright, J., 1993. Domoic acid intoxication of brown pelicans and cormorants in Santa Cruz, California. Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam, the Netherlands, pp. 643-649.
Google Scholar
Wright, J.L.C., 1995. Dealing with seafood toxins – present approaches and future-options. Food Res. Int. 28(4), 347-358.
CrossrefGoogle Scholar
Yasumoto, T., 2001. The chemistry and biological function of natural marine toxins. Chem. Rec. 1(3), 228-242.
CrossrefGoogle Scholar
Yasumoto, T., Oshima, Y. and Yamaguchi, M., 1978. Occurrence of a new type of shellfish poisoning in Tohoku District. B. Jpn. Soc. Sci. Fish 44(11), 1249-1255.
CrossrefGoogle Scholar
Yasumoto, T. and Satake, M., 1996. Chemistry, etiology and determination methods of ciguatera toxins. J. Toxicol.-Toxin Rev. 15(2), 91-107.
CrossrefGoogle Scholar
Yogi, K., Sakugawa, S., Oshiro, N., Ikehara, T., Sugiyama, K. and Yasumoto, T., 2014. Determination of toxins involved in Ciguatera fish poisoning in the pacific by LC/MS. J. AOAC Int. 97(2), 398-402.
CrossrefGoogle Scholar

Related titles:

New titles

Purchase Options

Institutional Offers

For institutional orders, please contact [email protected].