Cover Image

Chemical hazards in foods of animal origin


ECVPH Food safety assurance, Volume 7

Published: 2019  Pages: 670

eISBN: 978-90-8686-877-3 | ISBN: 978-90-8686-326-6

Book Type: Edited Collection
Al Bulushi, I., Poole, S., Deeth, H.C. and Dykes, G.A., 2009. Biogenic amines in fish: roles in intoxication, spoilage, and nitrosamine formation – a review. Crit. Rev. Food Sci. Nutr. 49, 369-377.
CrossrefGoogle Scholar
Anderson, K.E., 2010. Effects of specific foods and dietary components on drug metabolism – tyramine and related substances. In: Boullata, J.I. and Armenti, V.T. (eds.) Handbook of drug-nutrient interactions, 2nd edition. Humana Press, New York, NY, USA, pp. 254-256.
Google Scholar
Anwar, M.A., Ford, W.R., Broadley, K.J. and Herbert, A.A., 2012. Vasoconstrictor and vasodilator responses to tryptamine of rat-isolated perfused mesentery: comparison with tyramine and beta-phenylethylamine. Br. J. Pharmacol. 165, 2191-2202.
CrossrefGoogle Scholar
Anwar, M.A., Ford, W.R., Herbert, A.A. and Broadley, K.J., 2013. Signal transduction and modulating pathways in tryptamine-evoked vasopressor responses of the rat isolated perfused mesenteric bed. Vascul. Pharmacol. 58, 140-149.
CrossrefGoogle Scholar
Arnold, S.H. and Brown, W.D., 1978. Histamine, toxicity from fish products. Adv. Food Res. 24, 113-154.
Google Scholar
Askar, A. and Treptow, H., 1986. Biogene Amine in Lebensmitteln: Vorkommen, Bedeutung und Bestimmung. Ulmer, Stuttgart, Germany. Askar, A., 1982. Biogene Amine in Lebensmitteln und ihre Bedeutung. Ernährungs-Umschau 29, 143-147.
Google Scholar
Audebert, C., Blint, O., Monjanel-Mouterde, S., Auquier, P., Pedarriosse, A.M., Dingemanse, J., Durand, A. and Canot, J.P., 1992. Influence of food on the tyramine pressor effect during chronic moclobemide treatment of healthy volunteers. Eur. J. Clin. Pharmacol. 43, 507-512.
CrossrefGoogle Scholar
Australia New Zealand Food Standards Code, 2017. Maximum levels of contaminants and natural toxicants. Available at: https://tinyurl.com/y8t8x67h. Google Scholar
Azzaro, A.J., Van den Berg, C.M., Blob, L.F., Kemper, E.M., Sharoky, M., Oren, D.A. and Campbell, B.J., 2006. Tyramine pressor sensitivity during treatment with the selegiline transdermal system 6 mg/24 h in healthy subjects. J. Clin. Pharmacol. 46, 933-944.
CrossrefGoogle Scholar
Bacaloni, A., Insogna, S., Sancini, A., Ciarrocca, M. and Sinibaldi, F., 2013. Sensitive profiling of biogenic amines in human urine by capillary electrophoresis with field amplified sample injection. Biomed Chromatogr. 27, 987-993.
Google Scholar
Baixas-Nogueras, S., Bover-Cid, S., Veciana-Nogués, M.T., Mariné-Font, A. and Vidal-Carou, M.C., 2005. Biogenic amine index for freshness evaluation in iced Mediterranean hake (Merluccius merluccius). J. Food Prot. 68, 2433-2438.
CrossrefGoogle Scholar
Bardocz, S., 1995. Polyamines in food and their consequences for food quality and human health. Trends Food Sci. Technol. 6, 341-346.
CrossrefGoogle Scholar
Bartholomew, B.A., Berry, P.R., Rodhouse, J.C. and Gilhouse R.J., 1987. Scombrotoxic fish poisoning in Britain: features of over 250 suspected incidents from 1967 to 1986. Epidem. Infect. 99, 775.
CrossrefGoogle Scholar
Bauer, F. and Paulsen, P., 2001. Biogenic amines in meat and meat products. In: Morgan, D.M.L., Milovic, V., Krizek, M. and White, A. (ed.) COST 917, biogenically active amines in food. Vol. 5, pp. 88-93.
Google Scholar
Bauer, F., 2004. Residues in meat and meat products/residues associated with meat production. In: Jensen, W. (ed.) Encyclopedia of meat sciences. Elsevier, Amsterdam, the Netherlands, pp. 1187-1192.
Google Scholar
Bauer, F., Paulsen, P., Wasserbacher, B., Hagen, U., Ralph, A., Elmadfa, I. and Bardocz, S., 2002. The intake of biogenic amines in the diet. In: Morgan, D.M.L., Hirvi, T., Dandrifosse, G., Deloyer, P. and White, A. (eds.) COST 917, biogenically active amines in food. Vol. 6, pp. 149-156.
Google Scholar
Bear, M., Connors, B. and Paradiso, M., 2015. Neuroscience: exploring the brain, 4th edition. Wolters Kluwer, Alphen aan de Rijn, the Netherlands.
Google Scholar
Benkerroum, N., 2016. Biogenic amines in diary products, origin, incidence, and control means. Comprehensiv. Rev. Food Sci. Food Safety 15, 801-826.
Google Scholar
Berry, M.D., 2004. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J. Neurochem. 90, 257-271.
Google Scholar
Berry, M.D., 2007. The potential of trace amines and their receptors for treating neurological and psychiatric diseases. Rev. Recent Clin. Trials 2, 3-19.
CrossrefGoogle Scholar
Berry, M.D., Shitut, M.R., Almousa, A., Alcorn, J. and Tomberli, B., 2013. Membrane permeability of trace amines: evidence for a regulated, activity-dependent, nonexocytotic, synaptic release. Synapse 67, 656-667.
CrossrefGoogle Scholar
Beutling, D.M., 1996. Biogene Amine in der Ernährung. Springer, Berlin, Germany, 265 pp.
Google Scholar
Bieck, P.R. and Antonin, K.H., 1988. Oral tyramine pressor test and the safety of monoamino oxidase inhibitor drugs: comparison of brofaromine and tranylcypromine in healthy subjects. J. Clin. Psychopharmacol. 8, 237-245.
Google Scholar
Biji, K.B., Ravishankar, C.N., Venkateswarlu, R., Mohan, C.O. and Srinivasa Gopal, T.K., 2016. Biogenic amines in seafood: a review. J. Food Sci. Technol. 53, 2210-2218.
CrossrefGoogle Scholar
Birkmayer, W. and Riederer, P., 1989. Understanding the neurotransmitters: key to the workings of the brain. Springer, Wien, Austria, 137 pp.
Google Scholar
Borowsky, B., Adham, N., Jones, K.A., Raddatz, R., Artymyshyn, R., Ogozalek, K.L., Durkin, M.M., Lakhlani, P.P., Bonini, J.A. and Pathirana, S., 2001. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. 98, 8966-8971.
CrossrefGoogle Scholar
Bortolato, M. and Shih, J.C., 2011. Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence. Int. Rev. Neurobiol. 100, 13-42.
Google Scholar
Boulatta, J.I. and Armenti, V.T., 2006. Handbook of drug-nutrient interactions. Humana Press, New York, NY, USA, pp. 254-256.
Google Scholar
Bover-Cid, S., 2000. Identificación de variables y medidas de control de la acumulación de aminas biógenas en productos cárnicos fermentados. Ph.D. Thesis. University of Barcelona, Spain.
Google Scholar
Bover-Cid, S. and Holzapfel, W.H., 1999. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 53, 33-41.
CrossrefGoogle Scholar
Bover-Cid, S., Hugas, M., Izquierdo-Pulido, M. and Vidal-Carou, M.C., 2001a. Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages. Int. J. Food Microbiol. 66, 185-189.
CrossrefGoogle Scholar
Bover-Cid, S., Izquierdo-Pulido, M. and Vidal-Carou, M.C., 2000a. Influence of hygienic quality of raw materials on biogenic amine production during ripening and storage of dry fermented sausages. J. Food Prot. 63, 1544-1550.
CrossrefGoogle Scholar
Bover-Cid, S., Izquierdo-Pulido, M. and Vidal-Carou, M.C., 2000b. Mixed starter cultures to control biogenic amine production in dry fermented sausages. J. Food Prot. 63, 1556-1562.
CrossrefGoogle Scholar
Bover-Cid, S., Izquierdo-Pulido, M. and Vidal-Carou, M.C., 2001b. Effectiveness of a Lactobacillus sakei starter culture in the reduction of biogenic amine accumulation as a function of the raw material quality. J. Food Prot. 64, 367-373.
CrossrefGoogle Scholar
Bover-Cid, S., Izquierdo-Pulido, M. and Vidal-Carou, M.C., 2001c. Effect of the interaction between a low tyramine-producing Lactobacillus and proteolytic staphylococci on biogenic amine production during ripening and storage of dry sausages. Int. J. Food Microbiol. 65, 113-123.
CrossrefGoogle Scholar
Bover-Cid, S., Latorre-Moratella, M., Veciana-Noguez, T. and Vidal-Carou, C., 2008 Assessment of consumer exposure to tyramine from fermented sausages. Abstr. Food Micro., 2008.
Google Scholar
Bover-Cid, S., Miguelez-Arrizado, M.J. and Vidal-Carou, M.C., 2001d. Biogenic amine accumulation in ripened sausages affected by the addition of sodium sulphite. Meat Sci. 59, 391-396.
CrossrefGoogle Scholar
Broadley, K.J., 2010. The vascular effects of trace amines and amphetamines. Pharmacol. Ther. 125, 363-375.
CrossrefGoogle Scholar
Brostoff, J. and Hall, T., 1991. Überempfindlichkeit-Typ I-Reaktion. In: Roitt, I.V., Brostoff, J. and Male, D.K. (eds.) Kurzes Lehrbuch der Immunologie. Georg Thieme, Stuttgart, Germany, pp. 253-273.
Google Scholar
Burchett, S.A. and Hicks, T.P., 2006. The mysterious trace amines: protean neuromodulators of synaptic transmission in mammalian brain. Prog. Neurobiol. 79, 223-246.
CrossrefGoogle Scholar
Bütikofer, U. and Fuchs, D., 1997. Development of free amino acids in Appenzeller, Emmentaler, Gruyère, Raclette, Sbrinz and Tilsiter cheese. Lait 77, 91-100.
CrossrefGoogle Scholar
Canadian Food Inspection Agency (CFIA), 2012. CFIA fish list, Government of Canada, Ontario. Available at: https://tinyurl.com/y759j84n. Google Scholar
Canadian Food Inspection Agency (CFIA), 2013. Fish and seafood: quality management program. Government of Canada, Ontario, Canada. Available at: https://tinyurl.com/khneyon. Google Scholar
Casero Jr., R.A. and Woster, P.M., 2009. Recent advances in the development of polyamine analogues as antitumor agents. J. Med. Chem. 52, 4551-4573.
CrossrefGoogle Scholar
Chang, L.-Y., Chuang, M.-Y., Zan, H.-W., Meng, H.-F., Lu, C.-J., Yeh, P.-H. and Chen, J.-N., 2017. One-minute fish freshness evaluation by testing the volatile amine gas with an ultrasensitive porous-electrode-capped organic gas sensor system. ACS Sens. 2, 531-539.
CrossrefGoogle Scholar
Chu, C.H. and Bjeldanes, L.F., 1981. Effect of diamines, polyamines and tuna fish extracts on the binding of histamine to mucin in vitro. J. Food Sci. 47, 79-80.
CrossrefGoogle Scholar
Cipolla, B.G., Havouis, R. and Moulinoux, J.P., 2007. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids 33, 203-212.
CrossrefGoogle Scholar
Cipolla, B.G., Havouis, R. and Moulinoux, J.P., 2010 Polyamine reduced diet (PRD) nutrition therapy in hormone refractory prostate cancer patients. Biomed. Pharmacother. 64, 363-368.
CrossrefGoogle Scholar
Codex Alimentarius Commission (CAC), 1981a. Codex standard for canned finfish. Codex Stan. 119-1981. Google Scholar
Codex Alimentarius Commission (CAC), 1981b. Codex standard for canned tuna and bonito. Codex Stan. 70-1981. Google Scholar
Codex Alimentarius Commission (CAC), 1981c. Codex standard for canned sardines and sardine-type products. Codex Stan. 94-1981. Google Scholar
Codex Alimentarius Commission (CAC), 1989a. Codex general standard for quick frozen fish sticks (fish fingers), fish portions and fish fillets – breaded or in batter. Codex Stan. 166-1989. Google Scholar
Codex Alimentarius Commission (CAC), 1989b. Codex standard for quick frozen blocks of fish fillet, minced fish flesh and mixtures of fillets and minced fish flesh. Codex Stan. 165-1989. Google Scholar
Codex Alimentarius Commission (CAC), 1995. Codex general standard for quick frozen fish fillets. Codex Stan. 190-1995. Google Scholar
Codex Alimentarius Commission (CAC), 2003. Codex standard for boiled dried salted anchovies. Codex Stan. 236-2003. Google Scholar
Codex Alimentarius Commission (CAC), 2004. Codex standard for salted atlantic herring and salted sprat. Codex Stan. 244-2004. Google Scholar
Codex Alimentarius Commission (CAC), 2011. Codex standard for fish sauce. Codex Stan. 302-2011. Google Scholar
Codex Alimentarius Commission (CAC), 2013. Codex standard for smoked fish, smoke-flavoured fish and smoke-dried fish. Codex Stan. 311-2013. Google Scholar
Cox, B., Lee, T.F. and Martin, D., 1981. Different hypothalamic receptors mediate 5-hydroxytryptamine- and tryptamine-induced core temperature changes in the rat. Br. J. Pharmacol. 72, 477-482.
CrossrefGoogle Scholar
Da Prada, M., Zurcher, G. and Wuthrich, I., 1988. On tyramine, food, beverages: the reversible MAO inhibitor moclobemide. J. Neural Transmission, 26, 31-36.
Google Scholar
D’Andrea, G., D’Amico, D., Bussone, G., Bolner, A., Aguggia, M., Saracco, M.G., Galloni, E., De Riva, V., D’Arrigo, A. and Colavito, D., 2014. Tryptamine levels are low in plasma of chronic migraine and chronic tension-type headache. Neurol Sci. 35, 1941-1945.
CrossrefGoogle Scholar
Dandrifosse, G. and Dandrifosse, A.C., 2009. Polyamines and food allergy. In: Dandrifosse, G. (ed.) Biological aspects of biogenic amines, polyamines and conjugates. Transworld Research Network, Trivandrum, India, pp. 371-387.
Google Scholar
Dandrifosse, G., 2009. Maturation of the intestine by polyamines in the suckling rat. In: Dandrifosse, G. (ed.) Biological aspects of biogenic amines, polyamines and conjugates. Transworld Research Network, Trivandrum, India, pp. 149-183.
Google Scholar
Davey, M.J. and Farmer, J.B., 1963. The mode of action of tyramine. J. Pharm. Pharmacol. 15, 178-182.
CrossrefGoogle Scholar
Del Rio, B., Redurello, B., Linares, D.M., Ladero, V., Fernandez, M., Cruz Martin, M., Ruas-Madiedo, P. and Alvaret, M.A., 2017. The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chem. 218, 249-255.
CrossrefGoogle Scholar
Del Rio, B., Redurello, B., Linares, D.M., Ladero, V., Ruas-Madiedo, P., Fernandez, M., Cruz Martin, M. and Alvarez, M.A., 2018. Spermine and spermidine are cytotoxic towards intestinal cell cultures, but are they a health hazard at concentrations found in foods? Food Chem. 269, 321-326.
CrossrefGoogle Scholar
DeMasi, T.W., Wardlaw, F.B., Dick, R.L. and Acton, J.C., 1990. Nonprotein nitrogen (NPN) and free amino acid contents of dry, fermented and nonfermented sausages. Meat Sci. 27, 1-12.
CrossrefGoogle Scholar
Dierick, N., Vandekerkhove, P. and Demeyer, D., 1974. Changes in nonprotein nitrogen compounds during dry sausage ripening. J. Food Sci. 39, 301-304.
CrossrefGoogle Scholar
Doeglas, H.M.G., Huisman, J. and Nater, J.P., 1967. Histamine intoxication after cheese. Lancet II, 1361-1362.
Google Scholar
Dooley, D.J. and Quock, R.M., 1976. Tryptamine and 5-hydroxytryptamine-induced hypothermia in mice. J. Pharm. Pharmacol. 28, 775-776.
CrossrefGoogle Scholar
Durlu-Özkaya, F., 2002. Biogenic amine content of some Turkish cheeses. J. Food Process. Preserv. 26, 259-265.
CrossrefGoogle Scholar
Eble, J.N., 1965. A study of the potentiation of tryptamine by monoamine oxidase inhibitors in the dog. J. Pharmacol. Exp. Ther. 148, 48-53.
Google Scholar
Edwards, S.T. and Sandine, W.E., 1981. Symposium: microbial metabolites of importance in dairy products – public health significance of amines in cheese. J. Dairy Sci. 64, 2431-2438.
CrossrefGoogle Scholar
Eerola, H.S., Roig Sagués, A.X. and Hirvi, T.K., 1998. Biogenic amines in Finnish dry sausages. J. Food Saf. 18, 127-138.
CrossrefGoogle Scholar
Eerola, S., Maijala, R., Roig-Sagues, A.X., Salminen, M. and Hirvi, T., 1996. Biogenic amines in dry sausages as affected by starter culture and contaminant amine-positive Lactobacillus. J. Food Sci. 61, 1243-1246.
CrossrefGoogle Scholar
Eisenberg, T., Abdellatif, M., Schroeder, S., Primessnig, U., Stekovic, S., Pendl, T., Harger, A., Schipke, J., Zimmermann, A., Schmidt, A., Tong, M., Ruckenstuhl, C., Dammbrueck, C., Gross, A.S., Herbst, V., Magnes, C., Trausinger, G., Narath, S., Meinitzer, A., Hu, Z., Kirsch, A., Eller, K., Carmona-Gutierrez, D., Büttner, S., Pietrocola, F., Knittelfelder, O., Schrepfer, E., Rockenfeller, P., Simonini, C., Rahn A., Horsch, M., Moreth, K., Beckers, J., Fuchs, H., Gailus-Durner,V., Neff, F., Janik, D., Rathkolb, B., Rozman, J., De Angelis, M.H., Moustafa, T., Haemmerle, G., Mayr, M., Willeit, P., Von Frieling-Salewsky, M., Pieske, B., Scorrano, L., Pieber T., Pechlaner, R., Willeit, J., Sigrist, S.J., Linke, W.A., Mühlfeld, C., Sadoshima, J., Dengjel, J., Kiechl, S., Kroemer, G., Sedej, S. and Madeo, F., 2016. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428-1438.
CrossrefGoogle Scholar
Elsworth, J.D., Glover, V., Reynolds, G.P., Sandler, M., Lees, A.J., Phuapradit, P., Shaw, K.M., Stern, G.M. and Kumar, P., 1978. Deprenyl administration in man: a selective monoamine oxidase B inhibitor without the cheese effect. Psychopharmacol. 57, 33-38.
CrossrefGoogle Scholar
Etienne, M., 2005. Volatile amines as criteria for chemical quality assessment. Available at: https://tinyurl.com/yd99axnb. Google Scholar
European Commission (EC), 2002. Regulation (EC) No. 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. O.J.EU L31, 1-24. Google Scholar
European Commission (EC), 2005. Commission Regulation (EC) No. 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. O.J.EU L338, 1-26. Google Scholar
European Commission (EC), 2008. Commission Regulation (EC) No. 1022/2008 of 17 October 2008 amending Regulation (EC) No 2074/2005 as regards the total volatile basic nitrogen (TVB-N) limits. O.J.EU L277, 18-20. Google Scholar
European Commission (EC), 2011. Regulation (EU) No. 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No. 1924/2006 and (EC) No. 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No. 608/2004. O.J.EU L304, 18-63. Google Scholar
European Food Safety Authority (EFSA), 2011 Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 9, 2393. Google Scholar
Fankhauser, C., Charieras, T., Caille, D. and Rovei, V., 1994. Interaction of MAO inhibitors and dietary amine: a new experimental model in the conscious rat. J. Pharmacol. Toxicol. Method 32, 219-224.
CrossrefGoogle Scholar
Food and Agriculture Organisation (FAO), 1989. Non-sensory assessment of fish quality. Available at: http://www. fao.org/wairdocs/tan/x5990e/x5990e01.htm. Google Scholar
Food and Agriculture Organisation / World Health Organisation (FAO/WHO), 2013. Joint FAO/WHO expert meeting on the public health risks of histamine and other biogenic amines from fish and fishery products. FAO/WHO, Rome, Italy. Available at: http://apps.who.int/iris/handle/10665/89216. Google Scholar
Food and Drug Administration (FDA), 2011. Food Guidance Regulation, Chapter 7. Available at: https://tinyurl.com/y79e2okv. Google Scholar
Fuchs, T., Bauer, F. and Paulsen, P., 2009. Content of polyamines in by-products of slaughter pigs. Meat Sci. 83, 161-164.
CrossrefGoogle Scholar
Fücker, K., Mayer, R.A. and Pietsch, H.P., 1974. Dünnschichtelektrophoretische Bestimmung biogener Amine in Fisch und Fischprodukten im Zusammenhang mit Lebensmittelintoxikationen. Nahrung 18, 663-669
CrossrefGoogle Scholar
Ghose, K., 1980. Assessment of peripherial adrenergic activity and its interaction with drugs in man. Eur. J. Clin. Pharmacol. 17, 233-238.
CrossrefGoogle Scholar
Ghose, K., 1984. Tyramine pressor test: implications and limitations. Methods Find. Exp. Clin. Pharmacol. 6, 455-464.
Google Scholar
Gosetti, F., Mazzucco, E., Gianotti, V., Polati, S. and Gennaro, M.C., 2007. High performance liquid chromatography/tandem mass spectrometry determination of biogenic amines in typical Piedmont cheeses. J. Chromatogr. A. 1149, 151-157.
CrossrefGoogle Scholar
Grind, M., Siwers, B., Graffner, C., Alvan, G., Gustafsson, L.L., Halliday, J., Lingren, J.E., Ogenstad, S. and Selander, H., 1986. Pressure response of oral tyramine in healthy man given amiflamin and placebo. Clin. Pharmacol. Therapeut. 40, 155-160.
CrossrefGoogle Scholar
Haaland, H. and Njaa, L.R., 1988. Ammonia (NH3) and total volatile nitrogen (TVN) in preserved and unpreserved stored, whole fish. J. Sci. Food Agric. 44, 335-342.
CrossrefGoogle Scholar
Hagen, U., Bauer, F. and Paulsen, P., 2005. Geringfügige Änderungen von Amingehalten – Modellversuche zu Änderungen im Gehalt an biogenen Aminen und Polyaminen bei der Zubereitung von Fleisch und Fisch – Kurzmitteilung. Fleischwirtsch. 85, 128-130.
Google Scholar
Hagen, U., Paulsen, P. and Bauer, F., 2004. Studies on management of the histamine risk in fish for human nutrition and pet food based on temperature control. In: Smulders, F.J.M. and Collins, J.D. (eds.) Food safety assurance and veterinary public health. Vol. 3. Risk management strategies: monitoring and surveillance. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 292-294.
Google Scholar
Halasz, A., 2002. Toxicity of the biogenic amines – the present knowledge. In: Morgan, D.M.L., Hirvi, T., Dandrifosse, G., Deloyer, P. and White, A. (eds.) COST 917: Biologically active amines in food, Vol VI, Biologically active amines: metabloism and physiology and Biologically active amines in food processing and production of biologically active amines by bacteria. EC Publication, DG Research, Brussels, Belgium. pp 131-141.
Google Scholar
Handa, A.K., Fatima, T. and Mattoo, A.K., 2018. Polyamines: bio-molecules with diverse function in plant and human health and disease. Front. Chem. 6, 10.
CrossrefGoogle Scholar
Hanington, E. and Harper, A.M., 1968. The role of tyramine in the aetiology of migraine, and related studies on the cerebral and extracerebral circulations. Headache 8, 84-97.
CrossrefGoogle Scholar
Hanington, E., 1967. Preliminary report on tyramine headache. Br. Med. J. 5551, 550-551.
Google Scholar
Hanington, E., 1989. Migraine: the platelet hypothesis after 10 years. Biomed. Pharmacother. 43, 719-726.
CrossrefGoogle Scholar
Health Canada, 2012. Canadian Standards (maximum levels) for various chemical contaminants in foods. Ontario Health Canada. Available at: https://tinyurl.com/kqxyw7k. Google Scholar
Henry, M., 1960. Dosage biologique de l’histamine dans les aliments. Ann. Fals. Exp. Chim. 53, 24.
Google Scholar
Hessels, J., Kingma, A.W., Muskiet, F.A., Sarhan, S. and Seiler, N., 1991. Growth inhibition of two solid tumors in mice, caused by polyamine depletion, is not attended by alterations in cell-cycle phase distribution. Int. J. Cancer 48, 697-703.
CrossrefGoogle Scholar
Honecker, H., Coper, H., Fahndrich, C. and Rommelspacher, H., 1980. Identification of tetrahydronorharmane (tetrahydro-beta-carboline) in human blood platelets. J. Clin. Chem. Clin. Biochem. 18, 133-135.
Google Scholar
Huang, L., Zhao, J., Chen, Q. and Zhang, Y., 2014. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques. Food Chem. 145, 228-236.
CrossrefGoogle Scholar
Hungerford, J.M., 2010. Scombroid poisoning: a review. Toxicon. 56, 231-243.
CrossrefGoogle Scholar
Inubushi, T., Kamemura, N., Oda, M., Sakurai, J., Nakaya, Y., Harada, N., Suenaga, M., Matsunaga, Y., Ishidoh, K. and Katunuma, N., 2012. L-tryptophan suppresses rise in blood glucose and preserves insulin secretion in type-2 diabetes mellitus rats. J. Nutr. Sci. Vitaminol. 58, 415-422.
CrossrefGoogle Scholar
Jarisch, R., 2004. Histamin-Intoleranz, Histamin und Seekrankheit, 2nd edition. Thieme, Stuttgart, Germany.
Google Scholar
Jones, R.S., 1982. Tryptamine: a neuromodulator or neurotransmitter in mammalian brain? Prog. Neurobiol. 19, 117-139.
CrossrefGoogle Scholar
Joosten, H.M., 1988. Conditions allowing the formation of biogenic amines in cheese. 3. Factors influencing the amounts formed. Neth. Milk Dairy J. 41, 329-357.
Google Scholar
Kalac, P. and Krausova, P., 2005. A review of dietary polyamines: formation, implications for growth and health and occurrence in foods. Food Chem. 90, 2019-2013.
Google Scholar
Kalac, P., 2006. Biologically active polyamines in beef, pork and meat products: a review. Meat Sci. 77, 1-11.
Google Scholar
Kalac, P., 2009. Recent advances in the research on biological roles of dietary polyamines in man. J. Appl. Biomed. 7, 65-74.
CrossrefGoogle Scholar
Kalac, P., 2014. Health effects and occurrence of dietary polyamines: a review for the period 2005-mid 2013. Food Chem. 161, 27-39.
CrossrefGoogle Scholar
Kaneko, S., Ueda-Yamada, M., Ando, A., Matsumura, S., Okuda-Ashitaka, E., Matsumura, M., Uyama, M. and Ito, S., 2007. Cytotoxic effect of spermine on retinal pigment epithelial cells. Invest. Ophthalmol. Visual Sci. 48, 455-463.
Google Scholar
Klein, J., 1991. Immunologie. VCH, Weinheim, Germany.
Google Scholar
Korn, A., Da Prada, M., Raffesberg, W., Allen, S. and Gasic, S., 1988a. Tyramine pressor effect in man: studies with moclobemide, a novel, reversible monoamine oxidase inhibitor. J. Neural. Transm. Suppl. 26, 57-71.
Google Scholar
Korn, A., Da Prada, M., Raffesberg, W., Gasic, S. and Eichler, H.G., 1988b. Effect of moclobemide, a new reversible monoamine oxidase inhibitor, on absorption and pressure effect of tyramine. J. Cardiovasc. Pharmacol. 11, 17-23.
CrossrefGoogle Scholar
Krausova, P., Kalac, P., Krizek, M. and Pelikanova, T., 2006. Content of biologically active polyamines in livers of cattle, pigs and chickens after animal slaughter. Meat Sci. 73, 640-644.
CrossrefGoogle Scholar
Krausova, P., Kalac, P., Krizek, M. and Pelikanova, T., 2007. Changes in the content of biologically active polyamines during storage and cooking of pig liver. Meat Sci. 77, 269-274.
CrossrefGoogle Scholar
Krausova, P., Kalac, P., Krizek, M. and Pelikanova, T., 2008. Changes in the content of biologically active polyamines during pork loin storage and culinary treatments. Eur. Food Res. Technol. 226, 1007-1012.
CrossrefGoogle Scholar
Lagishetty, C.V. and Naik, S.R., 2008. Polyamines: potential anti-inflammatory agents and their possible mechanism of action. Indian J. Pharmacol. 40, 121-125.
CrossrefGoogle Scholar
Latorre-Moratalla, M.L., Bover-Cid, S., Talon, R., Garriga, M., Zanardi, E., Ianieri, A., Fraqueza, M.J., Elias, M., Drosinos, E.H. and Vidal-Carou, M.C., 2010. Strategies to reduce biogenic amine accumulation in traditional sausage manufacturing. LWT – Food Sci. Tech. 43, 20-25.
CrossrefGoogle Scholar
Lee, Y.C., Kung, H.F., Huang, C.Y., Huang, T.C. and Tsai, Y.H., 2015. Reduction of histamine and biogenic amines during salted fish fermentation by Bacillus polymyxa as a starter culture. J. Food Drug Anal. 30, 1-7.
Google Scholar
Lefevre, P.L.C., Palin, M.F. and Murphy, B.D., 2011. Polyamines on the reproductive landscape. Endocrine Rev. 32, 694-712.
CrossrefGoogle Scholar
Lehane, L. and Olley, J., 2000. Histamine fish poisoning revisited. Int. J. Food Microbiol. 58, 1-37.
CrossrefGoogle Scholar
Leroy, F., Verluyten, J. and De Vuyst, L., 2006. Functional meat starter cultures for improved sausage fermentation. Int. J. Food Microbiol. 106, 270-285.
CrossrefGoogle Scholar
Lesch, J.E., 2007. The first miracle drugs: how the sulfa drugs transformed medicine. Chapter 3, Prontosil. Oxford University Press, Oxford, UK, 51 pp.
Google Scholar
Li, H., Chen, Q., Zhao, J. and Wu, M., 2015. Nondestructive detection of total volatile basic nitrogen (TVB-N) content in pork meat by integrating hyperspectral imaging and colorimetric sensor combined with a nonlinear data fusion. LWT – Food Sci. Tech. 63, 268-274.
CrossrefGoogle Scholar
Linares, D.M., Del Rio, B., Redruello, B., Ladero, V., Martin, M.C., Fernandez, M., Ruas-Madiedo, P. and Alvarez, M.A., 2016. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chem. 197, 658-663
CrossrefGoogle Scholar
Linares, D.M., Martín, M.C., Ladero, V., Alvarez, M.A. and Fernández, M., 2011. Biogenic amines in dairy products. Crit. Rev. Food Sci. Nutr. 51, 691-703.
CrossrefGoogle Scholar
Lindemann, L. and Hoener, M.C., 2005. A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol. Sci. 26, 274-281.
CrossrefGoogle Scholar
Livingston, M.G. and Livingston, H.M., 1996. Monoamine oxidase inhibitor: an update on drug interactions. Drug Saf. 14, 219-227.
CrossrefGoogle Scholar
Lüthy, J. and Schlatter, C., 1983. Biogene Amine in Lebensmitteln: Zur Wirkung von Histamin, Tyramin und Phenylethylamin auf den Menschen. Z. Lebensm. Unters. Forsch. 177, 439-443.
CrossrefGoogle Scholar
Madeo, F., Eisenberg, T., Pietrocola, F. and Kroemer, G., 2018. Spermidine in health and disease. Science 359(6374), 2788.
CrossrefGoogle Scholar
Maijala, R.L., Eerola, S.H., Aho, M.A. and Hirn, J.A., 1993. The effect of GDL-induced pH decrease on the formation of biogenic amines in meat. J. Food Protect. 56, 125-129.
CrossrefGoogle Scholar
Malle, P. and Poumeyrol, M., 1989. A new chemical criterion for the quality control of fish; trimethyl amine/total volatile basic nitrogen (%). J. Food Prot. 52, 419-423.
CrossrefGoogle Scholar
Marcobal, A., De las Rivas, B. and Munoz, R., 2006. Methods for the detection of bacteria producing biogenic amines on foods: a survey. J. Verbrauchersch. Lebensmittelsicherh. 1, 187-196.
CrossrefGoogle Scholar
Martin, W.R. and Sloan, J.W., 1970. Effects of infused tryptamine in man. Psychopharmacol. 18, 231-237.
CrossrefGoogle Scholar
Mason, S.T., 1984. Catecholamines and behaviour. Cambridge University Press, Cambridge, UK.
Google Scholar
Matsumoto, M. and Benno, Y., 2007. The relationship between microbiota and polyamine concentration in the human intestine: a pilot study. Microbiol. Immunol. 51, 25-35.
CrossrefGoogle Scholar
McCabe-Sellers, B.J., Staggs, C.G. and Bogle, M.L., 2006. Tyramine in foods and monoamino oxidase inhibitor drugs: a crossroad where medicine, nutrition, pharmacy and food industry converge. J. Food Comp. Anal. 19, 58-65.
CrossrefGoogle Scholar
Mietz, J.L. and Karmas, E., 1977. Chemical quality index of canned tuna as determined by high-pressure liquid chromatography. J. Food Sci. 42, 155-158.
CrossrefGoogle Scholar
Ministry for Primary Industries (MPI), 2016. Importing food into New Zealand. New Zealand Ministry for Primary Industries, Wellington, New Zealand. Available at: https://tinyurl.com/yawu3kjp. Google Scholar
Minois, N., 2014. Molecular basis of the ‘Anti-Aging’ effect of spermidine and other natural polyamines – a mini-review. Gerontol. 60, 319-326.
CrossrefGoogle Scholar
Minois, N., Carmina-Gutierrez, D. and Madeo, F., 2011. Polyamines in aging and disease. Aging 3, 716-732.
CrossrefGoogle Scholar
Mosnaim, A.D., Frietag, F.G., Ignacia, R., Salas, M.A., Karoum, F., Wolf, M.E. and Diamond, S., 1996. Apparent lack of correlation between tyramine and phenylethylamine content and the occurrence of food precipitated migraine: re-examination of a variety of food products frequently consumed in the United States and commonly restricted in tyramine-restricted diets. Headache Quart. 7, 239-249.
Google Scholar
Mozdzan, M., Szemraj, J., Rysz, J., Stolarek, R.A. and Nowak, D., 2006. Anti-oxidant activity of spermine and spermidine re-evaluated with oxidizing systems involving iron and copper ions. Int. J. Biochem. Cell Biol. 38, 69-81.
CrossrefGoogle Scholar
Naila, A., Flint, S., Fletcher, G., Bremer, P. and Meerdink, G., 2010. Control of biogenic amines in food-existing and emerging approaches. J. Food Sci. 75, R139-R150.
CrossrefGoogle Scholar
Nebelin, E., Pillai, S., Lund E. and Thomsen, J., 1980. On the formation of N-nitrosopyrrolidine from potential precursors and nitrite. IARC Sci. Publ. 31, 183-193.
Google Scholar
Nelson, D. and Cox, M., 2011. Lehninger-biochemie, 4th edition. Springer, Berlin, Heidelberg, Germany, 1159 pp.
Google Scholar
Nguyen, H.B. and Nguyen, L.T., 2015. Rapid and non-invasive evaluation of pork meat quality during storage via impedance measurement. Int. J. Food Sci. Technol. 50, 1718-1725.
CrossrefGoogle Scholar
Novella-Rodríguez, S., Veciana-Nogués, M.T., Roig-Sagues, A.X., Trujillo-Mesa, A.J. and Vidal-Carou, M.C., 2002. Influence of starter and nonstarter on the formation of biogenic amine in goat cheese during ripening. J. Dairy. Sci. 85, 2471-2478.
CrossrefGoogle Scholar
Novella-Rodríguez, S., Veciana-Nogués, M.T., Roig-Sagues, A.X., Trujillo-Mesa, A.J. and Vidal-Carou, M.C., 2004. Comparison of biogenic amine profile in cheeses manufactured from fresh and stored (4 degrees C, 48 hours) raw goat’s milk. J. Food Prot. 67, 110-116.
CrossrefGoogle Scholar
Ohashi, K., Kageyama, M., Shinomiya, K., Fujita-Koyama, Y., Hirai, S.I., Katsuta, O. and Nakamura, M., 2017. Spermidine oxidation-mediated degeneration of retinal pigment epithelium in rats. Oxid. Med. Cell Longev. 4128061.
Google Scholar
Özogul, F. and Özogul, Y., 2006. Biogenic amine content and biogenic amine quality indices of sardines (Sardina pilchardus) stored in modified atmosphere packaging and vacuum packaging. Food Chem. 99, 574-578.
CrossrefGoogle Scholar
Paley, E.L., Perry, G. and Sokolova, O., 2013. Tryptamine induces axonopathy and mitochondriopathy mimicking neurodegenerative diseases via tryptophanyl-tRNA deficiency. Curr. Alzheimer Res. 10, 987-1004.
CrossrefGoogle Scholar
Patkar, A.A., Pae, C.U. and Zarzar, M., 2007. Transdermal selegiline. Drugs Today 43, 361-377.
CrossrefGoogle Scholar
Pattono, D., Bottero, M.T., Civera, T., Grassi, M.A. and Turi, R.M., 2000. Presenza di amine biogene nei formaggi fusi e grattugiati. Indust.-Aliment. 39, 1403-1410.
Google Scholar
Paulsen, P. and Bauer, F., 1997. Biogene Amine in Rohwürsten. II. Einflußfaktoren für die Bildung von biogenen Aminen in Rohwürsten. Fleischwirtsch. 77, 362-364.
Google Scholar
Paulsen, P. and Bauer, F., 2007. Spermine and spermidine concentrations in pork loin as affected by storage, curing and thermal processing. Eur. Food Res. Technol. 225, 921-924.
CrossrefGoogle Scholar
Paulsen, P., Dicakova, Z. and Bauer, F. 2008. Biogenic amines and polyamines in liver, kidney and spleen of roe deer and European brown hare. Eur. Food Res. Technol. 227, 209-213.
CrossrefGoogle Scholar
Paulsen, P., Grossgut, R., Bauer, F. and Rauscher-Gabernig, E., 2012. Estimates of maximum tolerable levels of tyramine content in foods in Austria. J. Food Nutr. Res. 51, 52-59.
Google Scholar
Paulsen, P., Hagen, U. and Bauer, F., 2006. Changes in biogenic amine contents, non protein nitrogen and crude protein during curing and thermal processing of m. longissimus, pars lumborum of pork. Eur. Food Res. Technol. 223, 603-608.
Google Scholar
Peeters, E.M.E., 1963. La presence d’histamine dans les aliments. Arch. Belges Med. Soc. 21, 451-463.
Google Scholar
Phuvasate, S. and Su, Y.C., 2010. Effects of electrolyzed oxidizing water and ice treatments on reducing histamine-producing bacteria on fish skin and food contact surface. Food Cont. 21, 286-291.
CrossrefGoogle Scholar
Pircher, A., Bauer, F. and Paulsen, P., 2007. Formation of cadaverine, histamine, putrescine and tyramine by bacteria isolated from meat, fermented sausages and cheeses. Eur. Food Res. Technol. 226, 225-231.
CrossrefGoogle Scholar
Price, K. and Smith, S.E., 1971. Cheese reaction and tyramine. Lancet I, 130-131.
Google Scholar
Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A.S., Mooney, R.D., Platt, M.L. and White, L.E., 2017. Neuroscience, 6th edition. Oxford University Press, Oxford, UK, 960 pp.
Google Scholar
Quock, R.M. and Weick, B.G., 1978. Tryptamine-induced drug effects insensitive to serotoninergic antagonists: evidence of specific tryptaminergic receptor stimulation? J. Pharm. Pharmacol. 30, 280-283.
CrossrefGoogle Scholar
Ramantanis, S., Faßbender, C.B. and Wenzel, S., 1985. Untersuchungen zur Bildung von Histamin, Tyramin und Tryptamin in Rohwürsten. Arch. Lebensmittelhyg. 36, 9-11.
Google Scholar
Rauscher-Gabernig, E., Gabernig, R., Brueller, W., Grossgut, R., Bauer, F. and Paulsen, P., 2012. Dietary exposure assessment of putrescine and cadaverine and derivation of tolerable levels in selected foods consumed in Austria. Eur. Food Res. Technol. 235, 209-220.
CrossrefGoogle Scholar
Rauscher-Gabernig, E., Grossgut, R., Bauer, F. and Paulsen, P., 2009. Assessment of alimentary histamine exposure of consumers in Austria and development of tolerable levels in typical foods. Food Cont. 20, 423-429.
CrossrefGoogle Scholar
Rauscher-Gabernig, E., Grossgut, R., Bauer, F. and Paulsen, P., 2010. Phenylethylamine in foods: concentrations and development of maximum tolerable levels. Wien. Tierärztl. Monatsschr. 97, 242-252.
Google Scholar
Reichl, F.X., 2002. Taschenatlas der Toxikologie: Substanzen, Wirkungen, Umwelt, 2nd edition. Thieme, Stuttgart, Germany.
Google Scholar
Ribbeck, R., 1983. Histaminentbinder. In: Wiesner, E. and Ribbeck, R. (eds.) Wörterbuch der Veterinärmedizin. 2. Aufl. VEB Gustav Fischer, Jena.
Google Scholar
Rice, S.L., Eitenmiller, R.R. and Koehler, P.E., 1976. Biologically active amines in food: a review. Milk Food Technol. 39, 353-358.
Google Scholar
Roig-Sagues, A.X., Hernandez-Herrero, M.M., Rodriguez-Jerez, J.J., Quinto-Fernandez, E.J. and Mora-Ventura, M.T., 1998. Aminas biogenas en queso: riesgo toxicologico y factores que influyen en su formacion. Alimentaria 294, 59-66.
Google Scholar
Ruddick, J.P., Evans, A.K., Nutt, D.J., Lightman, S.L., Rook, G.A. and Lowry, C.A., 2006. Tryptophan metabolism in the central nervous system: medical implications. Expert Rev. Mol. Med. 8, 1-27.
CrossrefGoogle Scholar
Ruiz-Capillas, C. and Jiménez-Colmenero, F., 2004. Biogenic amines in meat and meat products. Crit. Rev. Food Sci. Nutr. 44, 489-499.
CrossrefGoogle Scholar
Ruiz-Capillas, C. and Moral, A., 2001. Formation of biogenic amines in bulk-stored chilled hake (Merluccius merluccius L.) packed under atmospheres. J. Food Prot. 64, 1045-1050.
CrossrefGoogle Scholar
Sanchez-Jiménez, F., Ruiz-Pérez, M.V., Urdiales, J.L. and Medina, M.A., 2013. Pharmacological potential of biogenic amine-polyamine interactions beyond neurotransmission. Brit. J. Pharmacol. 170, 4-16.
CrossrefGoogle Scholar
Sandler, M., 1972. Migraine: a pulmonary disease? Lancet 1, 618-619.
Google Scholar
Sandler, M., Youdim, M.B.H and Hanington, E., 1974. A phenylethylamine oxidising defect in migraine. Nature 250, 335-337.
CrossrefGoogle Scholar
Sarhan, S., Knödgen, B. and Seiler, N., 1992. Polyamine deprivation, malnutrition and tumor growth. Anticancer Res. 12, 457-466.
Google Scholar
Sato, T., Okuzumi, M. and Fujii, T., 1995. Evaluation of polyamines of common mackerel during storage as indicators of decomposition. J. Food Hyg. Soc. Jpn. 36, 743-747.
CrossrefGoogle Scholar
Schlenker, G.R., 1996. Physiologische Bedeutung biogener Amine bei Säugetieren. In: Beutling, D.M. (ed.) Biogene Amine in der Ernährung. Springer, Berlin, Germany, pp. 15-22.
Google Scholar
Schmidt, J., 1992. Grundlagen der Pharmakotherapie der allergischen Rhinitis mit Radethazin® (Azelastin). Medicamentum H7, 193-197.
Google Scholar
Schulz, R. and Bieck, P.R., 1987. Oral tyramine test and the safety of MAO inhibitor drugs. Psychopharmacol. 91, 515-516.
CrossrefGoogle Scholar
Schulz, R., Antonin, K.H., Hoffmann, E., Jedrychowski, M., Nilsson, E., Schick, C. and Bieck, P.R., 1989. Tyramine kinetics and pressor sensitivity during monoamine oxidase inhibition by selegiline. Clin. Pharmacol. Therapeut. 46, 528-536.
CrossrefGoogle Scholar
Schulze, K., Reusse, U. and Tillack, J., 1979. Lebensmittelvergiftung durch Histamin nach Genuß von Oelsardinen. Arch. Lebensmittelhyg. 30, 56-59.
Google Scholar
Seiler, N., 2004. Catabolism of polyamines. Amino Acids 26, 217-233.
Google Scholar
Shalaby, A.R., 1996. Significance of biogenic amines to food safety and human health. Food Res. Internat. 29, 675-690.
CrossrefGoogle Scholar
Shan-Mei, L., 2016. Non-destructive detection of TVB-N content in fresh pork based on hyperspectral imaging technology. Available at: https://ieeexplore.ieee.org/document/7991989. Google Scholar
Shulgin, A.T. and Shulgin, A., 1997. TIHKAL: the continuation. Chapter 53, Tryptamine; Indole, 3-(2-aminoethyl); 3-(2-aminoethyl)indole. Available at: https://erowid.org/library/books_online/tihkal/tihkal53.shtml. Google Scholar
Silla-Santos, M.H., 1996. Biogenic amines: their importance in foods. Int. J. Food Microbiol. 29, 213-231.
CrossrefGoogle Scholar
Simpson, G.M. and Gratz, S.S., 1992. Comparison of the pressor effect of tyramine after treatment with phenelzine and moclobemide in healthy male volunteers. Clin. Pharmacol. Therapeut. 52, 286-291.
CrossrefGoogle Scholar
Singhal, R.S., Kulkarni, P.R. and Rege, D.V., 1997. Handbook of indices of food quality and authenticity. Woodhead Publishing Ltd., Abington, UK, 561 pp.
Google Scholar
Sjoerdsma, A., Lovenberg, W., Oates, J.A., Crout, J.R. and Udenfriend, S., 1959. Alterations in the pattern of amine excretion in man produced by a monoamine oxidase inhibitor. Science 130, 225.
CrossrefGoogle Scholar
Soda, K., 2011. The mechanisms by which polyamines accelerate tumor spread. J. Exp. Clin. Cancer Res. 30, 95.
CrossrefGoogle Scholar
Spano, G., Russo, P., Lonvaud-Funel, A., Lucas, P., Alexandre, H., Grandvalet, C., Coton, E., Coton, M., Barnavon, L., Bach, B., Rattray, F., Bunte, A., Magni, C., Ladero, V., Alvarez, M., Fernández, M., Lopez, P., De Palencia, P.F., Corbi, A., Trip, H. and Lolkema, J.S., 2010. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 64, Suppl. 3, 95-100.
Google Scholar
Stratton, J.E., Hutkins, R.W. and Taylor, S.L., 1991. Biogenic amines in cheese and other fermented foods: a review. J. Food Prot. 54, 460-470.
CrossrefGoogle Scholar
Sugimoto, Y., Kimura, I., Yamada, J., Watanabe, Y., Takeuchi, N. and Horisaka, K., 1991. The involvement of insulin in tryptamine-induced hypoglycemia in mice. Life Sci. 48, 1679-1683.
CrossrefGoogle Scholar
Sullivan, J.P., McDonnell, L., Hardiman, O.M., Farrell, M.A., Phillips, J.P. and Tipton, K.F., 1986. The oxidation of tryptamine by the two forms of monoamine oxidase in human tissues. Biochem. Pharmacol. 35, 3255-3260.
CrossrefGoogle Scholar
Suzzi, G. and Gardini, F., 2003. Biogenic amines in dry fermented sausages: a review. Int. J. Food Microbiol. 88, 41-54.
CrossrefGoogle Scholar
Taylor, S.L., Keefe, T.U., Winham, E.S. and Howell, J.F., 1982. Outbreak of histamine poisoning associated with the consumption of Swiss cheese. J. Food Prot. 45, 455-457.
CrossrefGoogle Scholar
Ten Brink, B., Damink, C., Joosten, H.M.L.J. and Huis in’t Veld, J.H.J., 1990. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11, 73-84.
CrossrefGoogle Scholar
Til, H.P., Falke, H.E., Prinsen, M.K. and Willems, M.I., 1997. Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. Food Chem. Toxicol. 35, 337-348.
CrossrefGoogle Scholar
Tizard, I., 1982. An introduction into veterinary immunology. W.B. Saunders Co, Philadelphia, PA, USA.
Google Scholar
Tjabringa, G.S., Zandieh-Doulabi, B., Helder, M.N., Knippenberg, M., Wuisman, P.I.J.M., and Klein-Nulend, J., 2008. The polyamine spermine regulates osteogenic differentiation in adipose stem cells. J. Cell. Mol. Med. 12, 1710-1717.
CrossrefGoogle Scholar
Valentini, P., Levre, E., Molinari, G., Brunetti, M., Domecini, D. and Caroli, G., 1993. Histamine and histamine-producing enterobacteria in canned thuna responsible for the scombrotoxic syndrome. Igiene Moderna 95, 154.
Google Scholar
Van den Berg, G.A., Muskiet, F.A., Kingma, A.W., Van der Slik, W. and Halie, M.R., 1986. Simultaneous gas-chromatographic determination of free and acetyl-conjugated polyamines in urine. Clin. Chem. 32, 1930-1937.
Google Scholar
Van den Bergh, C.M., Blob, L.F., Kemper, E.M. and Azzaro, A.J., 2003. Tyramine pharmacokinetics and reduced bioavailability with food. J. Clin. Pharmacol. 43, 604-609.
CrossrefGoogle Scholar
Van Gelderen, C.E.M., Savelkoul, T.J.F., Van Ginkel, L.A. and Van Dokkum, W., 1992. The effects of histamine administered in fish samples to healthy volunteers. Clin. Toxicol. 30, 585-596.
Google Scholar
Verdam, L. and Krajnc, E., 1988. 1,4-butanediamine. RIVM Report 88/6788097003. Toxicology Advisory Group, RIVM, Bilthoven, the Netherlands.
Google Scholar
Villanueva Valero, B., Bauer, F., Smulders, F.J.M., Arino, A. and Paulsen, P., 2005. Concentrations of biogenic amines and polyamines and microbiological changes during storage of vacuum-packed porcine kidney, liver and spleen. Food Sci. Techn. Int. 11, 337-344.
CrossrefGoogle Scholar
Vitale, A.A., Pomilio, A.B., Canellas, C.O., Vitale, M.G., Putz, E.M. and Ciprian-Ollivier, J., 2011. In vivo long-term kinetics of radiolabeled n,n-dimethyltryptamine and tryptamine. J. Nucl. Med. 52, 970-977.
CrossrefGoogle Scholar
Wallace, H.M., 1996. Polyamines in human health. Proc. Nutr. Society 55, 419-431.
CrossrefGoogle Scholar
Wüst, N., Rauscher-Gabernig, E., Steinwider, J., Bauer, F. and Paulsen, P., 2017. Risk assessment of dietary exposure to tryptamine for the Austrian population. Food Addit. Contam. Part A 34, 404-420.
CrossrefGoogle Scholar
Yamada, J., Sugimoto, Y., Kimura, I., Watanabe, Y. and Horisaka, K., 1994. Effects of tryptamine on plasma glucagon levels in mice. Neurochem. Res. 19, 15-18.
CrossrefGoogle Scholar
Yang, H.Y. and Neff, N.H., 1973. Beta-phenylethylamine: a specific substrate for type B monoamine oxidase of brain. J. Pharmacol. Exp. Therapeut. 187, 365-371.
Google Scholar
Young, S.N. and Gauthier, S., 1981. Effect of tryptophan administration on tryptophan, 5-hydroxyindoleacetic acid and indoleacetic acid in human lumbar and cisternal cerebrospinal fluid. J. Neurol. Neurosurg. Psych. 44, 323-328.
CrossrefGoogle Scholar

Related titles:

New titles

Purchase Options

Institutional Offers

For institutional orders, please contact [email protected].