Adams, A.A., Katepalli, M.P., Kohler, K., Reedy, S.E., Stilz, J.P., Vick, M.M., Fitzgerald, B.P., Lawrence, L.M. and Horohov, D.W., 2009. Effect of body condition, body weight and adiposity on inflammatory cytokine responses in old horses. Veterinary Immunology and Immunopathology 127: 286-294.
CrossrefGoogle Scholar
Ahn, S.G. and Thiele, D.J., 2003. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes and Development 17: 516-528.
CrossrefGoogle Scholar
Alessio, H.M. and Goldfarb, A.H., 1988. Lipid peroxidation and scavenger enzymes during exercise: adaptive response to training. Journal of Applied Physiology 64: 1333-1336.
CrossrefGoogle Scholar
Alessio, H.M., Goldfarb, A.H. and Cutler, R.G., 1988. MDA content increases in fast- and slow-twitch skeletal muscle with intensity of exercise in a rat. American Journal of Physiology 255: C874-877.
CrossrefGoogle Scholar
Aligue, R., Akhavan-Niak, H. and Russell, P., 1994. A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90. European Molecular Biology Organization Journal 13: 6099-6106.
CrossrefGoogle Scholar
Asea, A., Kraeft, S.K., Kurt-Jones, E.A., Stevenson, M.A., Chen, L.B., Finberg, R.W., Koo, G.C. and Calderwood, S.K., 2000. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Medicine 6: 435-442.
CrossrefGoogle Scholar
Atalay, M., Oksala, N.K.J., Laaksonen, D.E., Khanna, S., Nakao, C., Lappalainen, J., Roy, S., Hänninen, O. and Sen, C.K., 2004. Exercise training modulates heat shock protein response in diabetic rats. Journal of Applied Physiology 97: 605-611.
CrossrefGoogle Scholar
Avellini, L., Chiaradia, E. and Gaiti, A., 1999. Effect of exercise training, selenium and vitamin E on some free radical scavengers in horses (Equus caballus). Comparative Biochemistry and Physiology part B: Biochemistry and Molecular Biology 123: 147-154.
CrossrefGoogle Scholar
Blake, M.J., Fargnoli, J., Gershon, D. and Holbrook, N.J., 1991. Concomitant decline in heat-induced hyperthermia and HSP70 mRNA expression in aged rats. American Journal of Physiology 260: R663-R667.
Google Scholar
Bohen, S.P., 1995. Hsp90 mutants disrupt glucocorticoid receptor ligand binding and destabilize aporeceptor complexes. Journal of Biological Chemistry 270: 29433-29438.
CrossrefGoogle Scholar
Bourgela, M., Blais, D. and Marcoux, M., 1991. Reproducibility and validity of VLA4 in Standardbred pacer horses on track. Equine Exercise Physiology 3: 196-201.
Google Scholar
Breathnach, C.C., Sturgill-Wright, T., Stiltner, J.L., Adams, A.A., Lunn, D.P., Horohov, D.W., 2006. Foals are interferon gamma-deficient at birth. Veterinary Immunology and Immunopathology 112: 199-209.
CrossrefGoogle Scholar
Broome, C.S., Kayani, A.C., Palomero, J., Dillman, W.H., Mestril, R., Jackson, M.J. and McArdle, A., 2006. Effect of lifelong overexpression of HSP70 in skeletal muscle on age-related oxidative stress and adaptation after nondamageing contractile activity. Journal of the Federation of American Societies for Experimental Biology 20: 1549-1551.
CrossrefGoogle Scholar
Bruce, C.R., Carey, A.L., Hawley, J.A. and Febbraio, M.A., 2003. Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defence mechanism. Diabetes 52: 2338-2345.
CrossrefGoogle Scholar
Burkart, V., Germaschewski, L., Schloot, N.C., Bellmann, K. and Kolb, H., 2008. Deficient heat shock protein 70 response to stress in leukocytes at onset of type 1 diabetes. Biochemical and Biophysical Research Communications 369: 421-425.
CrossrefGoogle Scholar
Calderwood, S.K., Murshid, A. and Prince, T., 2009. The shock of aging: molecular chaperones and the heat shock response in longevity and aging – a mini-review. Gerontology 55: 550-558.
CrossrefGoogle Scholar
Castejon, F., Rubio, D., Tovar, P., Vinuesa, M. and Riber, C., 1994. A comparative study of aerobic capacity and fitness in three different horse breeds (Andalusian, Arabian and Anglo-Arabian). Zentralblatt für Veterinärmedizin A 41: 645-652.
Google Scholar
Chen, M., Bergman, R.N., Pacini, G. and Porte Jr., D., 1985. Pathogenesis of age-related glucose intolerance in man: insulin resistance and decreased beta-cell function. Journal of Clinical Endocrinology and Metabolism 60: 13-20.
CrossrefGoogle Scholar
Chiaradiaa, E., Avellini, L., Rueca, F., Spaterna, A., Porciello, F., Antonioni, M.T. and Gaiti, A., 1998. Physical exercise, oxidative stress and muscle damage in racehorses. Comparative Biochemistry and Physiology part B 119: 833-836.
CrossrefGoogle Scholar
Chrousos, G.P., 1995. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. New England Journal of Medicine 332: 1351-1362.
CrossrefGoogle Scholar
Chung, J., Nguyen, A., Henstridge, D.C., Holmes, A.G., Stanley Chan, M.H., Mesa, J.L., Lancaster, G.I., Southgate, R.J., Bruce, C.R., Duffy, S.J., Horvath, I., Mestril, R., Watt, M.J., Hooper, P.L., Kingwell, B.L., Vigh, L., Hevener, A. and Febbraio, M.A., 2008. HSP72 protects against obesity-induced insulin resistance. Proceedings of the National Academy of Sciences of the USA 105: 1739-1744.
CrossrefGoogle Scholar
Currie, R.W., Karmazyn, M., Kloc, M. and Mailer, K., 1988. Heat-shock response is associated with enhanced postischemic ventricular recovery. Circulation Research 63: 543-549.
CrossrefGoogle Scholar
Dai, R., Frejtag, W., He, B., Zhang, Y. and Mivechi, N.F., 2000. c-Jun NH2-terminal kinase targeting and phosphorylation of heat shock factor-1 suppress its transcriptional activity. Journal of Biological Chemistry 275: 18210-18218.
CrossrefGoogle Scholar
DeFronzo, R.A., 1981. Glucose intolerance and ageing. Diabetes Care 4: 493-501.
CrossrefGoogle Scholar
Deguchi, Y., Negoro, S. and Kishimoto, S., 1988. Age-related changes of heat shock protein gene transcription in human peripheral blood mononuclear cells. Biochemical and Biophysical Research Communications 157: 580-584.
CrossrefGoogle Scholar
Dennis, R.A., Trappe, T.A., Simpson, P., Carroll, C., Emma Huang, B., Nagarajan, R., Bearden, E., Gurley, C., Duff, G.W., Evans, W.J., Kornman, K. and Peterson, C.A., 2004. Interleukin-1 polymorphisms are associated with the inflammatory response in human muscle to acute resistance exercise. Journal of Physiology 560: 617-626.
CrossrefGoogle Scholar
Derijk, R. and Sternberg, E.M., 1994. Corticosteroid action and neuroendocrine-immune interactions. Annals of New York Academy of Sciences 746: 33-41.
CrossrefGoogle Scholar
Donovan, D.C., Jackson, C.A., Colahan, P.T., Norton, N. and Hurley, D.J., 2007. Exercise-induced alterations in pro-inflammatory cytokines and prostaglandin F2alpha in horses. Veterinary Immunology and Immunopathology 118: 263-269.
CrossrefGoogle Scholar
Drew, B.G., Ribas, V., Le, J.A., Henstridge, D.C., Phun, J., Zhou, Z., Soleymani, T., Darael, P., Sitz, D., Vergnes, L., Wanagat, J., Rueu, K., Febbraio, M.A. and Hevener, A.L., 2013. HSP72 is a mitochondrial stress sensor critical for Parkin action. Oxidative metabolism, and insulin sensitivity in skeletal muscle. Diabetes 63: 1488-1505.
CrossrefGoogle Scholar
Duncan, R.F., 2005. Inhibition of Hsp90 function delays and impairs recovery from heat shock. Journal of the Federation of American Societies for Experimental Biology 272: 5244-5256.
Google Scholar
Eckl, J.M. and Richter, K., 2013. Functions of the Hsp90 chaperone system: lifting client proteins to new heights. International Journal of Biochemistry and Molecular Biology 4: 157-165.
Google Scholar
Faassen, A.E., O’Leary, J.J., Rodysill, K.J., Bergh, N. and Hallgren, H.M., 1989. Diminished heat-shock protein synthesis following mitogen stimulation of lymphocytes from aged donors. Experimental Cell Research 183: 326-334.
CrossrefGoogle Scholar
Febbraio, M.A. and Koukoulas, I., 2000. HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. Journal of Applied Physiology 89: 1055-1060.
CrossrefGoogle Scholar
Febbraio, M.A., Mesa, J.L., Chung, J., Steensberg, A., Keller, C., Nielsen, H.B., Krustrup, P., Ott, P., Secher, N.H. and Pedersen, B.K., 2004. Glucose ingestion attenuates the exercise-induced increase in circulating heat shock protein 72 and heat shock protein 60 in humans. Cell Stress Chaperones 9: 390-396.
CrossrefGoogle Scholar
Fehrenbach, E., Niess, A.M., Schlotz, E., Passek, F., Dickhuth, H.H. and Northoff, H., 2000. Transcriptional and translational regulation of heat shock proteins in leukocytes of endurance runners. Journal of Applied Physiology 89: 704-710.
CrossrefGoogle Scholar
Ferrannini, E., Vichi, S., Beck-Nielsen, H., Laakso, M., Paolisso, L. and Smith, G., 1996. Insulin action and age. European Group for the Study of Insulin Resistance (EGIR). Diabetes 45: 947-953.
CrossrefGoogle Scholar
Folkesson, M., Mackey, A.L., Langerg, H., Oskarsson, E., Piehl-Aulin, K., Henriksson, J. and Kadi, F., 2013. The expression of heat shock protein in human skeletal muscle: effects of muscle fibre phenotype and training background. Acta Physiologica Scandinavica 209: 26-33.
Google Scholar
Ford, E.S., Giles, W.H. and Dietz, W.H., 2002. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. Journal of the American Medical Association 287: 356-359.
Google Scholar
Freestone, J.F., Wolfsheimer, K.J., Kamerling, S.G., Church, G., Hamra, J. and Bagwell, C., 1991. Exercise induced hormonal and metabolic changes in Thoroughbred horses: effects of conditioning and acepromazine. Equine Veterinary Journal 23: 219-223.
CrossrefGoogle Scholar
Fulle, S., Protasi, F., Di Tano, G., Pietrangelo, T., Beltramin, A., Boncompagni, S., Vecchiet, L. and Fano, G., 2004. The contribution of reactive oxygen species to sarcopenia and muscle ageing. Experimental Gerontology 39: 17-24.
CrossrefGoogle Scholar
Garramone Jr., R.R., Winters, R.M., Das, D.K. and Deckers, P.J., 1994. Reduction of skeletal muscle injury through stress conditioning using the heat-shock response. Plastic and Reconstructive Surgery 93: 1242-1247.
CrossrefGoogle Scholar
Geiger, P.C. and Gupte, A.A., 2011. Heat shock proteins are important mediators of skeletal muscle insulin sensitivity. Exercise and Sports Science Reviews 39: 34-42.
CrossrefGoogle Scholar
Genova, M.L., Pich, M.M., Bernacchia, A., Bianchi, C., Biondi, A., Bovina, C., Falasca, A.I., Formiggini, G., Parenti Castelli, G. and Lenaz, G., 2004. The mitochondrial production of reactive oxygen species in relation to ageing and pathology. Annals of the New York Academy of Sciences 1011: 86-100.
CrossrefGoogle Scholar
Gerard, M.P., De Graaf-Roelfsema, E., Hodgson, D.R. and Van der Kolk, J.H., 2014. Energetic considerations of exercise. In: Hodgson, D.R., McKeever, K.H. and McGowan, C.M. (eds.) The athletic horse: principles and practice of equine sports medicine. Saunders, Philadelphia, PA, USA, pp. 19-33.
Google Scholar
Gonzalez, B., Hernando, R. and Manso, R., 2000. Stress proteins of 70 kDa in chronically exercised skeletal muscle. Pflügers Archive: European Journal of Physiology 440: 42-49.
CrossrefGoogle Scholar
Gordon, M.E., McKeever, K.H., Betros, C.L. and Manso Filho, H.C. 2007. Exercise-induced alterations in plasma concentrations of ghrelin, adiponectin, leptin, glucose, insulin, and cortisol in horses. Veterinary Journal 173: 532-540.
CrossrefGoogle Scholar
Gottlieb-Vedi, M., Persson, S., Erickson, H. and Korbutiak, E., 1995. Cardiovascular, respiratory and metabolic effects of interval training at VLA4. Zentralblatt für Veterinärmedizin A 42: 165-175.
Google Scholar
Gupte, A.A., Bomhoff, G.L. and Geiger, P.C., 2008. Age-related differences in skeletal muscle insulin signaling: the role of stress kinases and heat shock proteins. Journal of Applied Physiology 105: 839-848.
CrossrefGoogle Scholar
Gupte, A.A., Bomhoff, G.L., Touchberry, C.D. and Geiger, P.C., 2010. Acute heat treatment improves insulin-stimulated glucose uptake in aged skeletal muscle. Journal of Applied Physiology 110: 451-457.
CrossrefGoogle Scholar
Hadden, W.C. and Harris, M.I., 1987. Prevalence of diagnosed diabetes, undiagnosed diabetes, and impaired glucose tolerance in adults 20-74 years of age. Vital and Health Statistics 11: 1-55.
Google Scholar
Halliwell, B., 1989. Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. British Journal of Experimental Pathology 70: 737-757.
Google Scholar
Harris, M.I., Hadden, W.C., Knowler, W.C. and Bennett, P.H., 1987. Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in U.S. population aged 20-74 yr. Diabetes 36: 523-534.
CrossrefGoogle Scholar
Heydari, A.R., You, S., Takahashi, R., Gutsmann-Conrad, A., Sarge, K.D. and Richardson, A., 2000. Age-related alterations in the activation of heat shock transcription factor 1 in rat hepatocytes. Experimental Cell Research 256: 83-93.
CrossrefGoogle Scholar
Hooper, P.L. and Hooper, P.L., 2009. Inflammation, heat shock proteins, and type 2 diabetes. Cell Stress Chaperones 14: 113-115.
CrossrefGoogle Scholar
Horohov, D.W., Adams, A.A. and Chambers, T.M., 2010. Immunosenescence of the equine immune system. Journal of Comparative Pathology 142, Suppl. 1: S78-84.
CrossrefGoogle Scholar
Horohov, D.W., Dimock, A., Guirnalda, P., Folsom, R.W., McKeever, K.H. and Malinowski, K., 1999. Effect of exercise on the immune response of young and old horses. American Journal of Veterinary Research 60: 643-647.
Google Scholar
Horohov, D.W., Kydd, J.H. and Hannant, D., 2002. The effect of ageing on T cell responses in the horse. Developmental and Comparative Immunology 26: 121-128.
CrossrefGoogle Scholar
Horohov, D.W., Sinatra, S.T., Chopra, R.K., Jankowitz, S., Betancourt, A. and Bloomer, R.J., 2012. The effect of exercise and nutritional supplementation on proinflammatory cytokine expression in young racehorses during training. Journal of Equine Veterinary Science 32: 805-815.
CrossrefGoogle Scholar
Hotamisligil, G.S., 2006. Inflammation and metabolic disorders. Nature 444: 860-867.
CrossrefGoogle Scholar
Hotamisligil, G.S., Arner, P., Caro, J.F., Atkinson, R.L. and Spiegelman, B.M., 1995. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. Journal of Clinical Investigation 95: 2409-2415.
CrossrefGoogle Scholar
Hung, C.H., Chang, N.C., Cheng, B.C. and Lin, M.T., 2005. Progressive exercise preconditioning protects against circulatory shock during experimental heatstroke. Shock 23: 426-433.
CrossrefGoogle Scholar
Hunter, T. and Poon, R.Y., 1997. Cdc37: a protein kinase chaperone? Trends in Cell Biology 7: 157-161.
CrossrefGoogle Scholar
Iozzo, P., Beck-Nielsen, H., Laakso, M., Smith, U., Yki-Järvinen, H. and Ferrannini, E., 1999. Independent influence of age on basal insulin secretion in nondiabetic humans. European group for the study of insulin resistance. Journal of Clinical Endocrinology and Metabolism 84: 863-868.
CrossrefGoogle Scholar
Ivy, J.L., Withers, R.T., Van Handel, P.J., Elger, D.H. and Costill, D.L., 1980. Muscle respiratory capacity and fibre type as determinants of the lactate threshold. Journal of Applied Physiology – Respiratory, Environmental, and Exercise Physiology 48: 523-527.
Google Scholar
Kern, P.A., Ranganathan, S., Li, C., Wood, L. and Ranganathan, G., 2001. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. American Journal of Physiology – Endocrinology and Metabolism 280: E745-E751.
CrossrefGoogle Scholar
Khassaf, M., Child, R.B., McArdle, A., Brodie, D.A., Esanu, C. and Jackson, M.J., 2001. Time course of responses of human skeletal muscle to oxidative stress induced by nondamageing exercise. Journal of Applied Physiology 90: 1031-1035.
CrossrefGoogle Scholar
Kiang, J.G. and Tsokos, G.C., 1998. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacology and Therapeutics 80: 183-201.
CrossrefGoogle Scholar
Kilgore, J.L., Musch, T.I. and Ross, C.R., 1998. Physical activity, muscle, and the HSP70 response. Canadian Journal of Applied Physiology 23: 245-260.
CrossrefGoogle Scholar
Kim, J.S., Hinchcliff, K.W., Yamaguchi, M., Beard, L.A., Markert, C.D. and Devor, S.T., 2005. Age-related changes in metabolic properties of equine skeletal muscle associated with muscle plasticity. Veterinary Journal 169: 397-403.
CrossrefGoogle Scholar
Kimura, H., Suzui, M., Nagao, F. and Matsumoto, K., 2001. Highly sensitive determination of plasma cytokines by time-resolved fluoroimmunoassay; effect of bicycle exercise on plasma level of interleukin-1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF alpha), and interferon gamma (IFN gamma). Analytical Sciences 17: 593-597.
CrossrefGoogle Scholar
Kinnunen, S., Hyyppä, S., Lappalainen, J., Oksala, N., Venojärvi, M., Nakao, C., Hänninen, O., Sen, C.K. and Atalay, M., 2005. Exercise-induced oxidative stress and muscle stress protein responses in trotters. European Journal of Applied Physiology 93: 496-501.
CrossrefGoogle Scholar
Kinnunen, S., Hyyppä, S., Oksala, N., Laaksonen, D.E., Hannila, M.K., Sen, C.K. and Atalay, M., 2009. alpha-Lipoic acid supplementation enhances heat shock protein production and decreases post exercise lactic acid concentrations in exercised Standardbred trotters. Research in Veterinary Science 87: 462-467.
CrossrefGoogle Scholar
Kohrt, W.M., Kirwan, J.P., Staten, M.A., Bourey, R.E., King, D.S. and Holloszy, J.O., 1993. Insulin resistance in ageing is related to abdominal obesity. Diabetes 42: 273-281.
CrossrefGoogle Scholar
Kondo, T., Sasaki, K., Matsuyama, R., Morino-Koga, S., Adachi, H., Suico, M.A., Kawashima, J., Motoshima, H., Furukawa, N., Kai, H. and Araki, E., 2012. Hyperthermia with mild electrical stimulation protects pancreatic beta-cells from cell stresses and apoptosis. Diabetes 61: 838-847.
CrossrefGoogle Scholar
Kregel, K.C., 2002. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physiology 92: 2177-2186.
CrossrefGoogle Scholar
Kregel, K.C., Moseley, P.L., Skidmore, R., Gutierrez, J.A. and Guerriero Jr., V., 1995. HSP70 accumulation in tissues of heat-stressed rats is blunted with advancing age. Journal of Applied Physiology 79: 1673-1678.
CrossrefGoogle Scholar
Kurucz, I., Morva, Á., Vaag, A., Eriksson, K.F., Huang, X., Groop, L. and Koranyi, L., 2002. Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes 51: 1102-1109.
CrossrefGoogle Scholar
LaManca, J.J., Sisto, S.A., Ottenweller, J.E., Cook, S., Peckerman, A., Zhang, Q., Denny, T.N., Gause, W.C. and Natelson, B.H., 1999. Immunological response in chronic fatigue syndrome following a graded exercise test to exhaustion. Journal of Clinical Immunology 19: 135-142.
CrossrefGoogle Scholar
Larsson, L., Sjodin, B. and Karlsson, J., 1978. Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22-65 years. Acta Physiologica Scandinavica 103: 31-39.
CrossrefGoogle Scholar
Lehnhard, R.A., McKeever, K.H., Kearns, C.F. and Beekley, M.D., 2004. Myosin heavy chain profiles and body composition are different in old versus young Standardbred mares. Veterinary Journal 167: 59-66.
CrossrefGoogle Scholar
Lepore, D.A., Hurley, J.V., Stewart, A.G., Morrison, W.A. and Anderson, R.L., 2000. Prior heat stress improves survival of ischemic-reperfused skeletal muscle in vivo. Muscle and Nerve 23: 1847-1855.
CrossrefGoogle Scholar
Liburt, N.R., Adams, A.A., Betancourt, A., Horohov, D.W. and McKeever, K.H., 2010a. Exercise-induced increases in inflammatory cytokines in muscle and blood of horses. Equine Veterinary Journal: 280-288.
Google Scholar
Liburt, N.R., Adams, A.A., Betancourt, A., Horohov, D.W. and McKeever, K.H., 2010b. Effects of cranberry and ginger on the physiological response to exercise and markers of inflammation following acute exercise in horses. Comparative Exercise Physiology 6: 157-169.
CrossrefGoogle Scholar
Liburt, N.R., Fugaro, M.N., Malinowski, K., Wunderlich, E.K., Zambito, J.L., Horohov, D.W., Betancourt, A., Boston, R.C., Geor, R.J., Onishi, J. and McKeever, K.H., 2012. The effect of age and exercise training on insulin sensitivity, fat and muscle tissue cytokine profiles and body composition of old and young Standardbred mares. Comparative Exercise Physiology 8: 173-187.
Wageningen Academic PublishersGoogle Scholar
Liburt, N.R., McKeever, K.H., Malinowski, K., Smarsh, D.N. and Geor, R.J., 2013. Response of the hypothalamic-pituitary-adrenal axis to stimulation tests before and after exercise training in old and young Standardbred mares. Journal of Animal Science 91: 5208-5219.
CrossrefGoogle Scholar
Linden, A., Art, T., Amory, H., Desmecht, D. and Lekeux, P., 1991. Effect of 5 different types of exercise, transportation and ACTH administration on plasma cortisol concentration in sport horses. Equine Exercise Physiology 3: 391-396.
Google Scholar
Lindholm, A. and Piehl, K., 1974. Fibre composition, enzyme activity and concentrations of metabolites and electrolytes in muscles of Standardbred horses. Acta Veterinaria Scandinavica 15: 287-309.
CrossrefGoogle Scholar
Lindner, A.E., 2010. Maximal lactate steady state during exercise in blood of horses. Journal of Animal Science 88: 2038-2044.
CrossrefGoogle Scholar
Liochev, S.I., 2013. Reactive oxygen species and the free radical theory of ageing. Free Radical Biology and Medicine 60: 1-4.
CrossrefGoogle Scholar
Liu, A.Y., Lin, Z., Choi, H.S., Sorhage, F. and Li, B., 1989. Attenuated induction of heat shock gene expression in ageing diploid fibroblasts. Journal of Biological Chemistry 264: 12037-12045.
Google Scholar
Locke, M. and Tanguay, R.M., 1996. Diminished heat shock response in the aged myocardium. Cell Stress Chaperones 1: 251-260.
CrossrefGoogle Scholar
Locke, M., Atkinson, B.G., Tanguay, R.M. and Noble, E.G. 1994. Shifts in type I fibre proportion in rat hindlimb muscle are accompanied by changes in HSP72 content. American Journal of Physiology 266: C1240-1246.
CrossrefGoogle Scholar
Madamanchi, N.R., Li, S., Patterson, C. and Runge, M.S., 2001. Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arteriosclerosis Thrombosis and Vascular Biology 21: 321-326.
CrossrefGoogle Scholar
Maglara, A.A., Vasilaki, A., Jackson, M.J. and McArdle, A., 2003. Damage to developing mouse skeletal muscle myotubes in culture: protective effect of heat shock proteins. Journal of Physiology 548: 837-846.
CrossrefGoogle Scholar
Malinowski, K., Shock, E.J., Rochelle, P.J., Kearns, C.F., Guirnalda, P.D. and McKeever, K.H., 2006. Plasma beta-endorphin, cortisol and immune responses to acute exercise are altered by age and exercise training in horses. Equine Veterinary Journal: 267-273.
Google Scholar
Marlin, D.J., Fenn, K., Smith, N., Deaton, C.D., Roberts, C.A., Harris, P.A., Dunster, C. and Kelly, F.J., 2002. Changes in circulatory antioxidant status in horses during prolonged exercise. Journal of Nutrition 132: 1622S-1627S.
Google Scholar
Marotta, F., Koike, K., Lorenzetti, A., Naito, Y., Fayet, F., Shimizu, H. and Marandola, P., 2007. Nutraceutical strategy in ageing: targeting heat shock protein and inflammatory profile through understanding interleukin-6 polymorphism. Annals of the New York Academy of Sciences 1119: 196-202.
CrossrefGoogle Scholar
McArdle, A., Dillmann, W.H., Mestril, R., Faulkner, J.A. and Jackson, M.J., 2004a. Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. Faseb Journal 18: 355-357.
CrossrefGoogle Scholar
McArdle, F., Spiers, S., Aldemir, H., Vasilaki, A., Beaver, A., Iwanejko, L., McArdle, A. and Jackson, M.J., 2004b. Preconditioning of skeletal muscle against contraction-induced damage: the role of adaptations to oxidants in mice. Journal of Physiology 561: 233-244.
CrossrefGoogle Scholar
McCarty, M.F., 2006. Induction of heat shock proteins may combat insulin resistance. Medical Hypotheses 66: 527-534.
CrossrefGoogle Scholar
McClung, J.P., Hasday, J.D., He, J.R., Montain, S.J., Cheuvront, S.N., Sawka, M.N. and Singh, I.S., 2008. Exercise-heat acclimation in humans alters baseline levels and ex vivo heat inducibility of HSP72 and HSP90 in peripheral blood mononuclear cells. American Journal of Physiology – Regulatory Integrative and Comparative Physiology 294: R185-R191.
CrossrefGoogle Scholar
McCue, M.E., Bannasch, D.L., Petersen, J.L., Gurr, J., Bailey, E., Binns, M.M., Distl, O., Guerin, G., Hasegawa, T., Hill, E.W., Leeb, T.B., Lindgren, G., Penedo, M.C.T., Røed, K.H., Ryder, O.A., Swinburne, J.E., Tozaki, T., Valberg, S.J., Vaudin, M., Lindblad-Toh, K., Wade, C.M. and Mickelson, J.R., 2012. A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies. PLoS Genetics 8: e1002451.
CrossrefGoogle Scholar
McKeever, K.H., Hinchcliff, K.W., Reed, S.M. and Robertson, J.T., 1993a. Plasma constituents during incremental treadmill exercise in intact and splenectomised horses. Equine Veterinary Journal 25: 233-236.
CrossrefGoogle Scholar
McKeever, K.H., Hinchcliff, K.W., Reed, S.M. and Robertson, J.T., 1993b. Role of decreased plasma volume in hematocrit alterations during incremental treadmill exercise in horses. American Journal of Physiology 265: R404-408.
Google Scholar
McKeever, K.H. and Malinowski, K., 1997. Exercise capacity in young and old mares. American Journal of Veterinary Research 58: 1468-1472.
Google Scholar
Miller, M.A., Pardo, I.D., Jackson, L.P., Moore, G.E. and Sojka, J.E., 2008. Correlation of pituitary histomorphometry with adrenocorticotrophic hormone response to domperidone administration in the diagnosis of equine pituitary pars intermedia dysfunction. Veterinary Pathology 45: 26-38.
CrossrefGoogle Scholar
Milne, K.J. and Noble, E.G. 2002. Exercise-induced elevation of HSP70 is intensity dependent. Journal of Applied Physiology 93: 561-568.
CrossrefGoogle Scholar
Mocanu, M.M., Steare, S.E., Evans, M.C., Nugent, J.H. and Yellon, D.M., 1993. Heat stress attenuates free radical release in the isolated perfused rat heart. Free Radical Biology and Medicine 15: 459-463.
CrossrefGoogle Scholar
Moldoveanu, A.I., Shephard, R.J. and Shek, P.N., 2001. The cytokine response to physical activity and training. Sports Medicine 31: 115-144.
CrossrefGoogle Scholar
Morton, J.P., Holloway, K., Woods, P., Cable, N.T., Burniston, J., Evans, L., Kayani, A.C. and McArdle, A., 2009a. Exercise training-induced gender-specific heat shock protein adapatations in human skeletal muscle. Muscle and Nerve 39: 230-233.
CrossrefGoogle Scholar
Morton, J.P., Kayani, A.C., McArdle, A. and Drust, B., 2009b. The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Medicine 39: 643-662.
CrossrefGoogle Scholar
Morton, J.P., MacLaren, D.P., Cable, N.T., Bongers, T., Griffiths, R.D., Campbell, I.T., Evans, L., Kayani, A., McArdle, A. and Drust, B., 2006. Time course and differential responses of the major heat shock protein families in human skeletal muscle following acute nondamageing treadmill exercise. Journal of Applied Physiology 101: 176-182.
CrossrefGoogle Scholar
Morton, J.P., Maclaren, D.P., Cable, N.T., Campbell, I.T., Evans, L., Kayani, A., McArdle, A. and Drust, B., 2008. Trained men display increased basal heat shock protein content of skeletal muscle. Medicine and Science in Sports and Exercise 40: 1255-1262.
CrossrefGoogle Scholar
Moyna, N.M., Acker, G.R., Fulton, J.R., Weber, K., Goss, F.L., Robertson, R.J., Tollerud, D.J. and Rabin, B.S., 1996. Lymphocyte function and cytokine production during incremental exercise in active and sedentary males and females. International Journal of Sports Medicine 17: 585-591.
CrossrefGoogle Scholar
Nagata, S., Takeda, F., Kurosawa, M., Mima, K., Hiraga, A., Kai, M. and Taya, K., 1999. Plasma adrenocorticotropin, cortisol and catecholamines response to various exercises. Equine Veterinary Journal 30: 570-574.
Google Scholar
Naito, H., Powers, S.K., Demirel, H.A. and Aoki, J., 2001. Exercise training increases heat shock protein in skeletal muscles of old rats. Medicine and Science in Sports and Exercise 33: 729-734.
Google Scholar
Narimiya, M., Azhar, S., Dolkas, C.B., Mondon, C.E., Sims, C., Wright, D.W. and Reaven, G.M., 1984. Insulin resistance in older rats. American Journal of Physiology 246: E397-E404.
Google Scholar
Nathan, D.F., Vos, M.H. and Lindquist, S., 1997. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proceedings of the National Academy of Sciences of the USA 94: 12949-12956.
CrossrefGoogle Scholar
Nielsen, F., Mikkelsen, B.B., Nielsen, J.B., Andersen, H.R. and Grandjean, P., 1997. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clinical Chemistry 43: 1209-1214.
Google Scholar
Njemini, R., Abeele, M.V., Demanet, C., Lambert, M., Vandebosch, S. and Mets, T., 2002. Age-related decrease in the inducibility of heat-shock protein 70 in human peripheral blood mononuclear cells. Journal of Clinical Immunology 22: 195-205.
CrossrefGoogle Scholar
Njemini, R., Lambert, M., Demanet, C., Abeele, M.V., Vandebosch, S. and Mets, T., 2003. The induction of heat shock protein 70 in peripheral mononuclear blood cells in elderly patients: a role for inflammatory markers. Human Immunology 64: 575-585.
CrossrefGoogle Scholar
Noble, E.G. and Shen, G.X., 2012. Impact of exercise and metabolic disorders on heat shock proteins and vascular inflammation. Autoimmune Disease 2012: 836519.
Google Scholar
Ooie, T., Kajimoto, M., Takahashi, N., Shinohara, T., Taniguchi, Y., Kouno, H., Wakisaka, O., Yoshimatsu, H. and Saikawa, T., 2005. Effects of insulin resistance on geranylgeranylacetone-induced expression of heat shock protein 72 and cardioprotection in high-fat diet rats. Life Sciences 77: 869-881.
CrossrefGoogle Scholar
Ostrowski, K., Rohde, T., Asp, S., Schjerling, P. and Pedersen, B.K., 1999. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. Journal of Physiology 515 (Part 1): 287-291.
Google Scholar
Ostrowski, K., Rohde, T., Zacho, M., Asp, S. and Pedersen, B.K., 1998. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. Journal of Physiology 508: 949-953.
CrossrefGoogle Scholar
Papa, S. and Skulachev, V.P., 1997. Reactive oxygen species, mitochondria, apoptosis and ageing. Molecular and Cellular Biochemistry 174: 305-319.
CrossrefGoogle Scholar
Park, J. and Liu, A.Y., 2001. JNK phosphorylates the HSF1 transcriptional activation domain: role of JNK in the regulation of the heat shock response. Journal of Cellular Biochemistry 82: 326-338.
CrossrefGoogle Scholar
Paulsen, G., Vissing, K., Kalhovde, J.M., Ugelstad, I., Bayer, M.L., Kadi, F., Schjerling, P., Hallen, J. and Raastad, T., 2007. Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. American Journal of Physiology – Regulatory Integrative and Comparative Physiology 293: R844-R853.
CrossrefGoogle Scholar
Pedersen, B.K. and Hoffman-Goetz, L., 2000. Exercise and the immune system: regulation, integration, and adaptation. Physiology Reviews 80: 1055-1081.
CrossrefGoogle Scholar
Persson, S., 1967. On blood volume and working capacity in horses. Studies of methodology and physiological and pathological variations. Acta Veterinaria Scandinavica 19: 19-189.
Google Scholar
Persson, S.G., 1997. Heart rate and blood lactate responses to submaximal treadmill exercise in the normally performing standardbred trotter – age and sex variations and predictability from the total red blood cell volume. Zentralblatt für Veterinärmedizin A 44: 125-132.
Google Scholar
Persson, S.G., Ekman, L., Lydin, G. and Tufvesson, G., 1973. Circulatory effects of splenectomy in the horse. II. Effect on plasma volume and total and circulating red-cell volume. Zentralblatt für Veterinärmedizin A 20: 456-468.
Google Scholar
Petersen, J.L., Mickelson, J.R., Cothran, E.G. Andersson, L.S., Axelsson, J., Bailey, E., Bannasch, D., Binns, M.M., Borges, A.S., Brama, P., Da Câmara Machado, M., Distl, O., Felicetti, M., Fox-Clipsham, L., Graves, K.T., Guérin, G., Haase, B., Hasegawa, T., Hemmann, K., Hill, E.W., Leeb, T., Lindgren, G., Lohi, H., Lopes, M.S., McGivney, B.A., Mikko, S., Orr, N., Penedo, M.C.T., Piercy, R.J., Raekallio, M., Rieder, S., Røed, K.H., Silvestrelli, M., Swinburne, J., Tozaki, T., Vaudin, M., Wade, M.C. and McCue, M.E., 2013. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS One 8: e54997.
CrossrefGoogle Scholar
Picard, D., Khursheed, B., Garabedian, M.J., Fortin, M.G., Lindquist, and Yamamoto, K.R., 1990. Reduced levels of HSP90 compromise steroid receptor action in vivo. Nature 348: 166-168.
CrossrefGoogle Scholar
Poso, A.R., Eklund-Uusitalo, S., Hyyppa, S. and Pirila, E., 2002. Induction of heat shock protein 72 mRNA in skeletal muscle by exercise and training. Equine Veterinary Journal: 214-218.
Google Scholar
Poso, A.R., Hyyppa, S. and Geor, R., 2008. Metabolic responses to exercise and training. In: Hinchcliff, K.W., Geor, R. and Kaneps, A.J. (eds.) Equine exercise physiology. Elsevier, Amsterdam, the Netherlands, pp. 248-273.
Google Scholar
Powers, R.W., Majors, A.K., Lykins, D.L., Sims, C.J., Lain, K.Y. and Roberts, J.M., 2002. Plasma homocysteine and malondialdehyde are correlated in an age- and gender-specific manner. Metabolism 51: 1433-1438.
CrossrefGoogle Scholar
Puntschart, A., Vogt, M., Widmer, H.R., Hoppeler, H. and Billeter, R., 1996. Hsp70 expression in human skeletal muscle after exercise. Acta Physiologica Scandinavica 157: 411-417.
CrossrefGoogle Scholar
Rao, D.V., Watson, K. and Jones, G.L., 1999. Age-related attenuation in the expression of the major heat shock proteins in human peripheral lymphocytes. Mechanisms of Ageing and Development 107: 105-118.
CrossrefGoogle Scholar
Rodriguez, M.C., Rosenfeld, J. and Tarnopolsky, M.A., 2003. Plasma malondialdehyde increases transiently after ischaemic forearm exercise. Medicine and Science in Sports and Exercise 35: 1859-1865.
CrossrefGoogle Scholar
Romani, W.A. and Russ, D.W., 2013. Acute effects of sex-specific sex hormones on heat shock proteins in fast muscle of male and female rats. European Journal of Applied Physiology 113: 2503-2510.
CrossrefGoogle Scholar
Shimokata, H., Muller, D.C., Fleg, J.L., Sorkin, J., Ziemba, A.W. and Andres, R., 1991. Age as independent determinant of glucose tolerance. Diabetes 40: 44-51.
CrossrefGoogle Scholar
Shoelson, S.E., Lee, J. and Goldfine, A.B., 2006. Inflammation and insulin resistance. Journal of Clinical Investigation 116: 1793-1801.
CrossrefGoogle Scholar
Singh, S.N. and Kanungo, M.S., 1968. Alterations in lactate dehydrogenase of the brain, heart, skeletal muscle, and liver of rats of various ages. Journal of Biological Chemistry 243: 4526-4529.
Google Scholar
Steensberg, A., Fischer, C.P., Sacchetti, M., Keller, C., Osada, T., Schjerling, P., Van Hall, G., Febbraio, M.A. and Pedersen, B.K., 2003. Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans. Journal of Physiology 548: 631-638.
CrossrefGoogle Scholar
Streltsova, J.M., McKeever, K.H., Liburt, N.R., Gordon, M.E., Horohov, D.W., Rosen, R.T. and Franke, W., 2006. Effect of orange peel and black tea extracts on markers of performance and cytokine markers of inflammation in horses. Equine and Comparative Exercise Physiology 3: 121-130.
CrossrefGoogle Scholar
Strepanova, L., Leng, X., Parker, S.B. and Harper, J.W., 1996. Mammalian p50/Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes and Development 10: 1491-502.
CrossrefGoogle Scholar
Suzuki, K., Nakaji, S., Yamada, M., Totsuka, M., Sato, K. and Sugawara, K., 2002. Systemic inflammatory response to exhaustive exercise. Exercise Immunology Review 8: 6-48.
Google Scholar
Tesch, P., Sjodin, B. and Karlsson, J., 1978. Relationship between lactate accumulation, LDH activity, LDH isozyme and fibre type distribution in human skeletal muscle. Acta Physiologica Scandinavica 103: 40-46.
CrossrefGoogle Scholar
Valette, J.P., Barrey, E., Auvinet, B., Gallouz, P. and Wolter, R., 1993. Exercise tests in saddle horses 2: the kinetics of blood lactate during constant exercise tests on a treadmill. Journal of Equine Veterinary Science 13: 465-468.
CrossrefGoogle Scholar
Van der Straten, A., Rommel, C., Dickson, B. and Hagen, E., 1997. The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. European Molecular Biology Organization Journal 16: 1961-1969.
CrossrefGoogle Scholar
Van Eden, W., Van der Zee, R. and Prakken, B., 2005. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nature Reviews Immunology 5: 318-330.
CrossrefGoogle Scholar
Vick, M.M., Adams, A.A., Murphy, B.A., Sessions, D.R., Horohov, D.W., Cook, R.F., Shelton, B.J. and Fitzgerald, B.P., 2007. Relationships among inflammatory cytokines, obesity, and insulin sensitivity in the horse. Journal of Animal Science 85: 1144-1155.
CrossrefGoogle Scholar
Vick, M.M., Murphy, B.A., Sessions, D.R., Reedy, S.E., Kennedy, E.L., Horohov, D.W., Cook, R.F. and Fitzgerald, B.P., 2008. Effects of systemic inflammation on insulin sensitivity in horses and inflammatory cytokine expression in adipose tissue. American Journal of Veterinary Research 69: 130-139.
CrossrefGoogle Scholar
Votion, D., 2014. Metabolic responses to exercise and training. In: Hinchcliff, K.W., Kaneps, A.J. and Geor, R. (eds.) Equine sports medicine and surgery: basic and clinical sciences of the equine athlete. Saunders, Philadelphia, PA, USA, pp. 747-767.
Google Scholar
Walsh, R.C., Koukoulas, I., Garnham, A., Moseley, P.L., Hargreaves, M. and Febbraio, M.A., 2001. Exercise increases serum Hsp72 in humans. Cell Stress and Chaperones 6: 386-393.
CrossrefGoogle Scholar
Wang, X., Khaleque, M.A., Zhao, M.J., Zhong, R., Gaestel, M. and Calderwood, S.K., 2006. Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding. Journal of Biological Chemistry 281: 782-791.
CrossrefGoogle Scholar
Welch, W.J., 1992. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiology Reviews 72: 1063-1081.
CrossrefGoogle Scholar
Wellen, K.E. and Hotamisligil, G.S., 2005. Inflammation, stress, and diabetes. Journal of Clinical Investigation 115: 1111-1119.
CrossrefGoogle Scholar
White, A., Estrada, M., Walker, K., Wisnia, P., Filgueira, G., Valdés, F., Araneda, O., Behn, C. and Martínez, R., 2001. Role of exercise and ascorbate on plasma antioxidant capacity in thoroughbred race horses. Comparative Biochemistry and Physiology A 128: 99-104.
CrossrefGoogle Scholar
Wilder, R.L., 1995. Neuroendocrine-immune system interactions and autoimmunity. Annual Review Immunology 13: 307-338.
CrossrefGoogle Scholar
Yamada, P.M., Amorim, F.T., Moseley, P., Robergs, R. and Schneider, S.M., 2007. Effect of heat acclimation on heat shock protein 72 and interleukin-10 in humans. Journal of Applied Physiology 103: 1196-1204.
CrossrefGoogle Scholar
Zhang, H.J., Drake, V.J., Morrison, J.P., Oberley, L.W. and Kregel, K.C., 2002. Selected contribution: differential expression of stress-related genes with ageing and hyperthermia. Journal of Applied Physiology 92: 1762-1769.
CrossrefGoogle Scholar

New titles