Alexander, M., Loomis, A.K., Fairburn-Beech, J., Van der Lei, J., Duarte-Salles, T., Prieto-Alhambra, D., Ansell, D., Pasqua, A., Lapi, F. and Rijnbeek, P., 2018. Real-world data reveal a diagnostic gap in non-alcoholic fatty liver disease. BMC Medicine 16: 130.
CrossrefGoogle Scholar
Ali, E.S. and Petrovsky, N., 2019. Calcium signaling as a therapeutic target for liver steatosis. Trends in Endocrinology Metabolism 30: 270-281.
CrossrefGoogle Scholar
Anstee, Q.M. and Goldin, R.D., 2006. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. International Journal of Experimental Pathology 87: 1-16.
CrossrefGoogle Scholar
Arif, S.H., 2009. A Ca2+-binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology. Bioessays 31: 410-421.
CrossrefGoogle Scholar
Bedossa, P., Tordjman, J., Aron-Wisnewsky, J., Poitou, C., Oppert, J.-M., Torcivia, A., Bouillot, J.-L., Paradis, V., Ratziu, V. and Clément, K., 2017. Systematic review of bariatric surgery liver biopsies clarifies the natural history of liver disease in patients with severe obesity. Gut 66: 1688-1696.
CrossrefGoogle Scholar
Benjamini, Y. and Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B 57: 289-300.
Google Scholar
Berridge, M.J., 2016. The inositol trisphosphate/calcium signaling pathway in health and disease. Physiological Reviews 96: 1261-1296.
CrossrefGoogle Scholar
Celio, M. and Heizmann, C., 1982. Calcium-binding protein parvalbumin is associated with fast contracting muscle fibres. Nature 297: 504-506.
CrossrefGoogle Scholar
Cerqueira, E., Marinho, D.A., Neiva, H.P. and Lourenço, O., 2020. Inflammatory effects of high and moderate intensity exercise – a systematic review. Frontiers in Physiology 10: 1550.
CrossrefGoogle Scholar
De Miranda, M.A., Schlater, A.E., Green, T.L. and Kanatous, S.B., 2012. In the face of hypoxia: myoglobin increases in response to hypoxic conditions and lipid supplementation in cultured Weddell seal skeletal muscle cells. Journal of Experimental Biology 215: 806-813.
CrossrefGoogle Scholar
Fabre, T., Kared, H., Friedman, S.L. and Shoukry, N.H., 2014. IL-17A enhances the expression of profibrotic genes through upregulation of the TGF-β receptor on hepatic stellate cells in a JNK-dependent manner. Journal of Immunology 193: 3925-3933.
CrossrefGoogle Scholar
Gahlmann, R. and Kedes, L., 1990. Cloning, structural analysis, and expression of the human fast twitch skeletal muscle troponin C gene. Journal of Biological Chemistry 265: 12520-12528.
CrossrefGoogle Scholar
Hagar, A., Wang, Z., Koyama, S., Serrano, J.A., Melo, L., Vargas, S., Carpenter, R. and Foley, J., 2019. Endurance training slows breast tumor growth in mice by suppressing Treg cells recruitment to tumors. BMC Cancer 19: 536.
CrossrefGoogle Scholar
Hashida, R., Kawaguchi, T., Bekki, M., Omoto, M., Matsuse, H., Nago, T., Takano, Y., Ueno, T., Koga, H. and George, J., 2017. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. Journal of Hepatology 66: 142-152.
CrossrefGoogle Scholar
Heizmann, C.W., Berchtold, M.W. and Rowlerson, A.M., 1982. Correlation of parvalbumin concentration with relaxation speed in mammalian muscles. Proceedings of the National Academy of Sciences of the USA 79: 7243-7247.
CrossrefGoogle Scholar
Hendgen-Cotta, U.B., Esfeld, S., Coman, C., Ahrends, R., Klein-Hitpass, L., Flögel, U., Rassaf, T. and Totzeck, M., 2017. A novel physiological role for cardiac myoglobin in lipid metabolism. Scientific Reports 7: 43219.
CrossrefGoogle Scholar
Holmskov, U., Mollenhauer, J., Madsen, J., Vitved, L., Grønlund, J., Tornøe, I., Kliem, A., Reid, K.B., Poustka, A. and Skjødt, K., 1999. Cloning of gp-340, a putative opsonin receptor for lung surfactant protein D. Proceedings of the National Academy of Sciences of the USA 96: 10794-10799.
CrossrefGoogle Scholar
Karlsen, T., Aamot, I.-L., Haykowsky, M. and Rognmo, Ø., 2017. High intensity interval training for maximizing health outcomes. Progress in Cardiovascular Diseases 60: 67-77.
CrossrefGoogle Scholar
Keating, S.E. and Adams, L.A., 2016. Exercise in NAFLD: just do it. Journal of Hepatology 65: 671-673.
CrossrefGoogle Scholar
Kregel, K.C., Allen, D.L., Booth, F.W., Fleshner, M.R., Henriksen, E.J., Musch, T., O’Leary, D., Parks, C., Poole, D. and Ra’anan, A., 2006. Resource book for the design of animal exercise protocols. American Physiological Society, Rockville, MD, USA.
Google Scholar
Li, X., Wang, Z. and Klaunig, J.E., 2018. Modulation of xenobiotic nuclear receptors in high-fat diet induced non-alcoholic fatty liver disease. Toxicology 410: 199-213.
CrossrefGoogle Scholar
Loomba, R. and Cortez-Pinto, H., 2015. Exercise and improvement of NAFLD: practical recommendations. Journal of Hepatology 63: 10-12.
CrossrefGoogle Scholar
Love, M.I., Huber, W. and Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15: 550.
CrossrefGoogle Scholar
Maher, C.A., Kumar-Sinha, C., Cao, X., Kalyana-Sundaram, S., Han, B., Jing, X., Sam, L., Barrette, T., Palanisamy, N. and Chinnaiyan, A.M., 2009. Transcriptome sequencing to detect gene fusions in cancer. Nature 458: 97-101.
CrossrefGoogle Scholar
Meli, R., Mattace Raso, G. and Calignano, A., 2014. Role of innate immune response in non-alcoholic fatty liver disease: metabolic complications and therapeutic tools. Frontiers in Immunology 5: 177.
Google Scholar
Melo, L. and Hagar, A., 2019. How to train a mouse – methodological issues in pre-clinical exercise oncology. American Journal of Cancer Research 9: 1246-1253.
Google Scholar
Melo, L., Bilici, M., Hagar, A. and Klaunig, J.E., 2021a. The effect of endurance training on non-alcoholic fatty liver disease in mice. Physiological Reports 9: e14926.
Google Scholar
Melo, L., Hagar, A. and Klaunig, J., 2021b. Raw data. figshare. Dataset. https://doi.org/10.6084/m9.figshare.14143706.v1 Google Scholar
Melo, L., Tilmant, K., Hagar, A. and Klaunig, J.E., 2020. Effect of endurance exercise training on liver gene expression in male and female mice. Applied Physiology, Nutrition, Metabolism 46: 356-367.
CrossrefGoogle Scholar
Metsalu, T. and Vilo, J., 2015. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Research 43: W566-W570.
CrossrefGoogle Scholar
Nitta, T., Xundi, X., Hatano, E., Yamamoto, N., Uehara, T., Yoshida, M., Harada, N., Honda, K., Tanaka, A. and Sosnowski, D., 2003. Myoglobin gene expression attenuates hepatic ischemia reperfusion injury. Journal of Surgical Research 110: 322-331.
CrossrefGoogle Scholar
Oliva-Vilarnau, N., Hankeova, S., Vorrink, S.U., Mkrtchian, S., Andersson, E.R. and Lauschke, V.M., 2018. Calcium signaling in liver injury and regeneration. Frontiers in Medicine 5: 192.
CrossrefGoogle Scholar
Pan, Y., Zvaritch, E., Tupling, A.R., Rice, W.J., De Leon, S., Rudnicki, M., McKerlie, C., Banwell, B.L. and MacLennan, D.H., 2003. Targeted disruption of the ATP2A1 gene encoding the sarco (endo) plasmic reticulum Ca2+ ATPase isoform 1 (SERCA1) impairs diaphragm function and is lethal in neonatal mice. Journal of Biological Chemistry 278: 13367-13375.
CrossrefGoogle Scholar
Paschos, P. and Paletas, K., 2009. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia 13: 9.
Google Scholar
Perry, S., 1998. Troponin T: genetics, properties and function. Journal of Muscle Research Cell Motility 19: 575-602.
CrossrefGoogle Scholar
Reynoso, E. and Lavine, J.E., 2012. The role of exercise in treating NAFLD. Nature Reviews Gastroenterology Hepatology 9: 368-370.
CrossrefGoogle Scholar
Romero-Gómez, M., Zelber-Sagi, S. and Trenell, M., 2017. Treatment of NAFLD with diet, physical activity and exercise. Journal of Hepatology 67: 829-846.
CrossrefGoogle Scholar
Sheeba, C.J., Marslin, G., Revina, A.M. and Franklin, G., 2014. Signaling pathways influencing tumor microenvironment and their exploitation for targeted drug delivery. Nanotechnology Review 3: 123-151.
Google Scholar
Sriram, R., Kreutzer, U., Shih, L. and Jue, T., 2008. Interaction of fatty acid with myoglobin. FEBS Letters 582: 3643-3649.
CrossrefGoogle Scholar
Sumida, Y. and Yoneda, M., 2018. Current and future pharmacological therapies for NAFLD/NASH. Journal of Gastroenterology 53: 362-376.
CrossrefGoogle Scholar
Sutti, S. and Albano, E., 2020. Adaptive immunity: an emerging player in the progression of NAFLD. Nature Reviews Gastroenterology Hepatology 17: 81-92.
CrossrefGoogle Scholar
Tfelt-Hansen, J., MacLeod, R.J., Chattopadhyay, N., Yano, S., Quinn, S., Ren, X., Terwilliger, E.F., Schwarz, P. and Brown, E.M., 2003. Calcium-sensing receptor stimulates PTHrP release by pathways dependent on PKC, p38 MAPK, JNK, and ERK1/2 in H-500 cells. American Journal of Physiology – Endocrinology and Metabolism 285: E329-E337.
CrossrefGoogle Scholar
Toonen, E.J., Mirea, A.-M., Tack, C.J., Stienstra, R., Ballak, D.B., Van Diepen, J.A., Hijmans, A., Chavakis, T., Dokter, W.H. and Pham, C.T., 2016. Activation of proteinase 3 contributes to nonalcoholic fatty liver disease and insulin resistance. Molecular Medicine 22: 202-214.
CrossrefGoogle Scholar
Townsend, P., Yacoub, M. and Barton, P., 1997. Assignment of the human fast skeletal muscle troponin C gene (TNNC2) between D20S721 and GCT10F11 on chromosome 20 by somatic cell hybrid analysis. Annals of Human Genetics 61: 457-459.
CrossrefGoogle Scholar
Vernon, G., Baranova, A. and Younossi, Z., 2011. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Alimentary Pharmacology Therapeutics 34: 274-285.
CrossrefGoogle Scholar
Williamson, R.M., Price, J.F., Glancy, S., Perry, E., Nee, L.D., Hayes, P.C., Frier, B.M., Van Look, L.A., Johnston, G.I. and Reynolds, R.M., 2011. Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the Edinburgh Type 2 diabetes study. Diabetes Care 34: 1139-1144.
CrossrefGoogle Scholar
Wilson, C.L., Mann, J., Walsh, M., Perrugoria, M.J., Oakley, F., Wright, M.C., Brignole, C., Di Paolo, D., Perri, P. and Ponzoni, M., 2014. Quiescent hepatic stellate cells functionally contribute to the hepatic innate immune response via TLR3. PLoS ONE 9: e83391.
CrossrefGoogle Scholar
Win, S., Than, T.A., Zhang, J., Oo, C., Min, R.W.M. and Kaplowitz, N., 2018. New insights into the role and mechanism of c-Jun-N-terminal kinase signaling in the pathobiology of liver diseases. Hepatology 67: 2013-2024.
CrossrefGoogle Scholar
Wu, Q.-L., Jha, P.K., Raychowdhury, M.K., Du, Y., Leavis, P.C. and Sarkar, S., 1994. Isolation and characterization of human fast skeletal β troponin T cDNA: comparative sequence analysis of isoforms and insight into the evolution of members of a multigene family. DNA Cell Biology 13: 217-233.
CrossrefGoogle Scholar
Xing, L., Cheng, Q., Zha, G. and Yi, S., 2017. Transcriptional profiling at high temporal resolution reveals robust immune/inflammatory responses during rat sciatic nerve recovery. Mediators of Inflammation 2017: 3827841.
Google Scholar
Yamaoka, T., Yoshino, K., Yamada, T., Idehara, C., Hoque, M.O., Moritani, M., Yoshimoto, K., Hata, J.-I. and Itakura, M., 2000. Diabetes and tumor formation in transgenic mice expressing Reg I. Biochemical Biophysical Research Communications 278: 368-376.
CrossrefGoogle Scholar
Younossi, Z.M., Koenig, A.B., Abdelatif, D., Fazel, Y., Henry, L. and Wymer, M., 2016. Global epidemiology of nonalcoholic fatty liver disease – meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64: 73-84.
Google Scholar

New titles